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Abstract 

Multiple history matching approach to quantify remaining 

oil saturation distribution uncertainty is possible and 

practical to perform with technological advancement 

nowadays. This paper presents the selection method to 

optimize number of forecast variants while preserving the 

uncertainty. The results are low estimate, best estimate and 

high estimate of remaining oil saturation distribution for 

development scenario design and wide-covered 

representative variants to be used for prediction stage. 

 

Different model variants considered match with historical 

data are selected based on few criteria such as field total 

liquid production, field total oil production, region pressure 

and well total oil production. To be able to measure how 

similar or different one variant to another, cluster analysis 

was performed. The clustering was based on significant 

parameters to objective function which were used to build 

proxy-equations. In this study, Multi-Dimensional Scaling 

(MDS) method was used to visualize the result in two-

dimensional space. Each variant represented by a point and 

the distance between points show their degree of similarity. 

After grouping process finished, different remaining oil 

saturation distribution were analyzed from P90, P50 and P10 

quantile models. 

  

There were 400 variants on final history match stage and 

then 127 variants were selected based on production and 

pressure profile similarity. Subsequently, number of 

forecast variants were optimized to 20 representative 

variants which cover the range of uncertainty. Three 

quantiles were selected from cumulative distribution 

function of these variants to be used for subsurface risk 

management in designing infill well location or waterflood 

pattern. 

 

This paper demonstrates the application of extended 

uncertainty analysis by combining static modelling to 

dynamic simulation uncertainty variables in Limau Barat 

Limau Tengah Field which applicable in most development 

fields. Assisted history matching algorithm used in this 

study were determined for full field simulation. This paper 

also introduces the application of probabilistic remaining 

mobile oil saturation maps in assessing subsurface risk for 

better decision making in field development.  

 

Introduction 

Oil and gas are known as high risk and high gain industry 

with charateristic of capital-intensive and require advanced 

technology. It is very difficult and expensive to measure or 

understand condition in subsurface where hydrocarbon 

accumulated in magnitude of hundreds or thousands of 

metres below the surface. Common practice to manage the 

risk is reservoir modelling which representing the physical  

 

 

 

features of subsurface condition. Data are gathered and 

analyzed to be able to mimic historical production and 

pressure data. Having done this, the reservoir model is used 

to predict production performance under different scenario. 

In case of successful development, the reward could bear 

this high-risk industry while in case of undesirable surprise, 

expected profit is certainly shrinking. Nowadays, easy-oil 

become harder to get and more uncertainty in finding and 

producing hydrocarbon. This unforeseen result actually 

could be quantified and managed for a better decision. 

 

Popular tool to calculate hydrocarbon volume and predict 

recoverable reserves are reservoir modeling and simulation. 

Although static reservoir modelling has been applying 

probabilistic approach for the last decades, the dynamic 

reservoir modelling part is still using deterministic 

approach. As a result, single static reservoir model 

realization is selected for history matching which provides 

deterministic remaining oil saturation map to be analyzed 

for designing development scenario. It’s a common practice, 

that single recovery factor per scenario is used to make 

business decision out of many possibilities. A significant 

discrepancy between field development plan and actual 

reservoir performance occur under this limitation. 

 

Probabilistic approach in reservoir simulation 

Capturing the other possibilities of remaining oil saturation 

distribution map is the main objective of applying 

probabilistic approach for the reservoir simulation. Having 

analyzed the potential risk and reward, decision makers 

could anticipate the worst and best possible outcomes and 

most importantly eliminate surprises. By assessing the risk, 

management could reduce the reservoir performance 

uncertainty by gathering new key data that contribute to 

uncertainty or consider to proceed with development plan. 

 

Probabilistic approach change the way team work into more 

blended and synergy among interdisciplinary team. More 

discussion between geoscientist and reservoir engineer to 

design uncertainty parameters and their range. Tolerable 

history matching acceptance criteria prevent unrealistic 

model modification which has no geological sense. Over 

fitting in history matching process is unnecessary since 

historical data which become the reference also have 

uncertainty. Geoscientist could access the progress of 

history matching result and evaluate the impact of static 

uncertainty parameters to quality of mismatch. 

 

Reservoir simulation run time become faster and faster, 

especially with technology advancement nowadays. This 

opens the opportunity to analyze fine-scale reservoir model 

or different realization of reservoir model efficiently 

(Darmawan, 2021). Combined with methodology and 

algorithm that effectively perform sensitivity and  
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optimization, full-field probabilistic study become feasible 

and practical. Experimental design is a process to perform 

sensitivity study with few popular algorithms such as; Latin 

Hypercube, Tornado, Monte Carlo, Placket-Burman and 

Box-Behnken. Visualization of big data plays an important 

role to effectively analyze results and get insight from it. For 

example, tornado diagram visualizes single parameter 

variation impact while others are kept at base value while 

Pareto chart visualizes combination parameter variation 

impact compare to pre-determined objective functions. 

Further, mismatch between historical produciton and 

simulations could be minimized by applying Optimization. 

Example of optimization algorithms are such as; Particle 

Swarm Optimization, Differential Evolution and Ensemble.   

 

Field application 

This study applied probabilistic approach for history 

matching and prediction of Limau Barat Limau Tengah field 

and a first-step effort to integtrate static-dynamic 

uncertainty variables. The field is located onshore in South 

Sumatra Basin. Depositional environment of the field is 

fluvio-deltaic with updated geological concept, multi-level 

reservoirs. Waterflood development will be challenge with 

the new geological concept, so there are 9 reservoir tanks 

are prioritized for further development out of 20 reservoir 

tanks. Production commenced in 1951 and water injection 

started in 1998. There are 160 wells in total, 80 producing 

wells, mostly commingled production. Fluid characteristic 

from the field is 25oAPI with no gas cap found in the studied 

tanks. The total original oil in place from 20 tank reservoir 

is 291.2 MMSTB (P50) with cumulative oil total 45.9 

MMSTB per 1st January 2020 and water cut above  94%. 

 

Purpose of this study is to perform probabilistic reservoir 

simulation for better understanding of the field. Output from 

this study are different scenario of remaining oil saturation 

distribution map for risk assessment and optimized number 

of multi-variant model to be carry out to prediction stage.  

 

Method 

A workflow was built to manage probabilistic history 

matching and prediction for Limau Barat Limau Tengah 

field as shown in Figure 1. Pre-defined static model 

variations were imported to be integrated with dynamic 

model uncertainty. Additionally, PVT correlation input data 

were included as uncertainty to cover laboratory 

measurement inconsistency. When the reservoir has been 

characterized in dynamic modeling format, reservoir 

simulation was performed until match criteria fulfilled. 

Preparation prior to prediction stage were history match 

variants selection and development scenario pattern design. 

 

Integrate static-dynamic uncertainty variable and range 

Existing probabilistic static model that has been built by 

geoscientists were imported, excluding its water saturation 

model. Water saturation model were not imported from the 

existing static model due to an update applied in this study 

using J-function approach. The 3D geomodel consists of 7.7 

million total cells with dimension 219 x 212 x 156 and block 

size 50 m x 50 m x 1.4 m. There wasn’t upscaling process 

performed since active cells was only 0.66 million cells. The 

reservoir properties were rebuilt to be included in 

uncertainty design for history matching. There were 37 

static modelling variables such as variogram parameters for 

properties distribution and OWC. The reservoir properties 

are facies (or lithology), porosity and NTG. These variables 

were then combined with dynamic simulation uncertainty  

 

variables such as rock properties, PVT and aquifer 

properties. Following this, dynamic uncertainty variables 

and range were determined. The static modelling and the 

dynamic simulation processes were calculated in a common 

workflow to automate the multi-realization cases. 

 

Fluid properties and rock properties data obtained from 

laboratory measurement such as SCAL, RCAL and PVT 

were analyzed. Flow zone indicator (FZI) technique was 

applied for rock type classification and later the 

classification was used to correlate porosity-permeability 

for each rock type. Relative permeability and capillary 

pressure data from few samples were normalized and then 

de-normalized for each rock type. PVT samples were 

inconsistent each other, possibly due to acquisition time was 

not at initial condition. It was decided to use correlation with 

parameter input of oil API and bubble point pressure and gas 

gravity. The first two parameters were included as 

uncertainty variable. Existing material balance analysis was 

used for initial parameter setting of aquifer model and its 

uncertainty. Subsequently, they were inputted to the 

integrated modeling software tool including well-related 

data such as historical well-based production and injection 

data, field and tank pressure, equilibration data and 

perforation event. 

 

Manage probabilistic initialization and history matching 

Initialization of the integrated probabilistic static model 

with base case dynamic model has purpose to distribute 

pressure and saturation for each cell in initial condition. At 

this stage, calculated OOIP was obtained and then compared 

with volumetric OOIP from static model. Few methods 

available for initialization the dynamic model such as; 

equilibrium, equilibrium+SWATINIT, mix and 

enumeration method. This probabilistic study was using 

Equilbrium+SWATINIT method to avoid capillary pressure 

manual adjustment. After the reservoir was characterized, 

initialized and equilibrium-validated, probabilistic initial 

full run without any model modification were ready to 

perform prior to history matching. 

 

History matching was performed with liquid control, 

subsequently oil and water profiles were tried to match for 

both field and well level. Assisted history matching 

algorithm such as experimental design and optimization 

were used to manage probabilistic history matching 

efficiently. Experimental design outputs were sensitivity of 

single and combination variables. For this study, Tornado 

experiment was run once and then followed by Latin 

Hypercube experiment iterations. Tornado diagram and 

Pareto chart were used to visualize significant parameters  

compare to objective functions. Prior uncertainty variables 

and ranges were updated based on this evaluation until 

historical profile and simulation are overlaid within 

acceptable range. Further history match was run by 

Optimization which has pre-determined objective function 

such as minimizing oil field mismatch and oil well 

mismatch. In this study, Particle Swarm Optimization (PSO) 

algorithm was selected to find several local solutions and 

global solutions. The method is applicable for many 

uncertain variables and to avoid being trapped at local 

solution (Kathrada, 2009). Each PSO experiment contained 

400 variants which gave result of Pareto chart. The chart was 

used to screen and rank uncertainty parameter for the 

following experiment iteration. To determine when 

experiment has reached optimum result, Pareto front 

analysis was used.  
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Manage multi-variant reservoir model for prediction 

Pre-defined acceptable match criteria were used for 

equiprobable history matching variants selection. The 

criteria were field liquid total and oil total tolerance, 

qualitative acceptable objective functions and qualitative 

tank pressure. Afterwards, there are two preparations for 

transitioning from history matching to prediction stage. 

First, optimizing number of variant to be carry out to 

prediction with representative uncertainty range. Another 

preparation is development scenario design based on few 

selected remaining hydrocarbon maps. In this study, MDS 

method was choosen for clusterization analysis which used 

k-means algorithm (Steinhaus 1956, Lloyd 1982). This 

algorithm minimizes the sum of square error between the 

points of clusters and their centers. MDS method visualizes 

how close the model variants are in terms of values of the 

selected parameters. Validation of this method was tried at 

smaller model prior to application in Limau Barat Limau 

Tengah field. Prediction performance of case with and 

without clusterization were compared as shown in Figure 2. 

Range of oil and water total profiles were similar although 

variant number have reduced from 89 to 12 models (87%). 

These selected history matching variants were carried over 

to prediction stage after the development scenario design 

was analyzed.  

 

Manage subsurface risk 

Cumulative Distribution Function of total oil parameter 

were established in order to select its P90, P50 and P10 for 

high, mid and low case determination, respectively. Two-

dimensional map of Mobile Oil Per Unit area 

(NTG*SOIL*PORO*DZ) were established for each 

representative as subsurface risk assessment in designing 

development scenario. Risk and reward assessment applied 

to prioritize development for reservoir tanks. These selected 

9 reservoir tanks combined have OOIP and oil cumulative 

production more than 80% of the whole reservoir tanks. 

Reservoir tanks with high OOIP and low recovery factor 

(RF) were suitable for infill primary recovery candidate 

prior to waterflood secondary recovery. Prediction runs 

were performed for selected history matching variants from 

January 2020 to January 2036. Waterflood preparation was 

estimated ready on January 2026, afterwards full-scale 

waterflood activity started with pre-defined constraints such 

as well liquid rate limit, well injection rate limit, botom hole 

pressure limit for injector, produced water re-injection, 

group liquid rate limit and economic limit for each well. 

 

Result and Discussion 

Static-dynamic model integration 

Results of this study are presented from integrating static-

dynamic uncertainty to managing multi-variant model run. 

In collaboration with all subsurface team, initial uncertainty 

parameters were drafted such as; porosity distribution, 

contact depth,  NTG, facies, permeability multiplier, Kv/Kh 

multiplier, relative permeability, aquifer properties and fault 

transmissibiliy. Probabilistic static and dynamic model were 

recorded within common workflow tool. Afterwards, the 

probabilistic models were initialized which gave OOIP at 

281.7 MMSTB, 289.7 MMSTB and 297.7 MMSTB for P90, 

P50 and P10 respectively. While volumetric OOIP from 

static model were 278 MMSTB, 283 MMSTB and 294 

MMSTB.  

 

Probabilistic history matching 

Initial full run was exercised with liquid control with 

running time around 75 minutes. Liquid profile from  

 

simulation was far from historical data due to over 

optimistic water profile simulation model as shown in 

Figure 3. Based on this initial performance, dynamic 

uncertainty variables and range were determined in more 

detail prior to history matching process. Experimental 

design was performed with Tornado, Latin Hypercube and 

Optimization experiment iteratively. There were 400 runs 

for each iteration to match liquid, pressure, oil and water 

profile. Pareto chart showed residual oil saturation, aquifer, 

relative permeability and porosity distribution were the most 

significant parameters to variable oil field total. Another 

analysis with Pareto front as shwon in Figure 4 indicated 

that further optimization experiment iteration would only 

give similar result, which means this experiment iteration 

has reached optimum result of multi-objective functions. 

 

Transitioning from history matching to prediction 

Selecting 400 variants to be carried over to prediction 

required quantitative and qualitative selection techniques as 

shown in Figure 5. The first step was to select probabilistic 

history matching from the last experiment. These variants 

were selected based on field liquid total mismatch tolerance 

5% and oil total mismatch tolerance 10%. Qualitatively, 

acceptable objective functions oil wells mismatch < 650 and 

oil field mismatch < 3 were chosen. Regional or tank level 

selection was applied only for the tank pressure parameter. 

Variants with flat tank pressure profile were not selected, 

which reduced the output to 127 variants for the 

equiprobable history matching. The following step was 

variant clusterization to avoid similar variants selection. 

Assumption was made by taking 20 cluster to represent 

equiprobable history match variants as shown in Figure 6. 

In this study, the amount has considered sufficient to cover 

the uncertainty range and also practical to perform within 

half-day. These unique history matching variants were 

carried over to prediction stage when development scenario 

design was finished. 

 

Subsurface risk assessment 

OOIP after history matching process were 283.6 MMSTB 

(P90), 291.2 MMSTB (P50) and 307.4 MMSTB (P10). 

Compared to before history matching case, OOIP difference 

were less than 4% and the updated uncertainty range was 

shifted due to water saturation cut-off elimination. Few 

wells with perforation at transition zone could only produce 

sufficient liquid by doing this modification. Recovery factor 

range with corresponding cumulative oil production were 

15.7% to 16.5%. Probabilistic history matching have 

reduced parameter’s uncertainty-range during initial and 

final history match. 

 

This study considered sufficient and practical to analyze 3 

representative maps out of 20 maps for subsurface risk 

assessment. The P90, P50 and P10 quantile of cumulative 

oil CDF were determined. The more cumulative oil 

produced means the less remaining oil in reservoir, therefore 

low-side MOPU map originated from P10 cumulative oil 

case. High, medium and low case of MOPU map for 9 

prioritized tanks were established and analyzed as shown 

partially in Figure 7. Having examined the risk, the low-

side MOPU map was used for waterflood pattern design. 

Then, adjusted the pattern to actual condition which have 

considered surface, well and subsurface factors. Prediction 

of waterflood scenario was applied to 20 selected variants. 

The range of results represent static and dynamic input data 

uncertainties and also risk and reward of all variant model 

possibilities. Different performance behavior among  
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variants could be analyzed for risk assessment as shown in 

Figure 8. Low case prediction variants in the red circle have 

key uncertainty parameters such as fluid contact at S Tank 

1, aquifer properties and rock properties that drive the 

reservoir performance. These are focus area of data 

gathering in the future to reduce reservoir performance 

uncertainty. Suggestion for future work is focusing on 

cluster optimization. Optimum number of clusters could be 

evaluated and then applied to MOPU map for development 

scenario design.   

 

Conclusions 

❖ Hardware and software advancement nowadays could 

handle full field probabilistic simulation 

 

❖ Automatic capillary pressure adjustment enable 

probabilistic initialization handling in effective and 

efficient way 

 

❖ Clustering technique optimizes the number of model 

variants carried over from history matching to 

prediction 

 

❖ Subsurface risk was assessed by evaluating multi-

variant MOPU maps for development scenario design  

 

❖ Probabilistic approach could suggest key reservoir 

performance uncertainty drivers which are valuable 

insight for business decision making 
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Figure 1.  Probabilistic Dynamic Model Workflow 

 

 
Figure 2.  MDS clusterization validation 
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Figure 3.  Initial full run 

 

 
Figure 4.  Pareto front analysis 

 

 

Figure 5.  Probabilistic history matching criteria 
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Figure 6.  Multi-variant selection 

 

 

Figure 7.  Subsurface risk assessment 

  

 

Figure 8.  Key uncertainty parameters 
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