IATMI22-080

Material Selection Analysis for Well Design Candidate for CCS/CCUS Project

Syatria Kumala Putra^{*1}, Mahendra Wijaya¹, Ridwan Sangaji¹, Muhammad Faisal Umar¹, Irawan Nugroho¹, and Raissa Salsabila Arifin¹ ¹Pertamina Hulu Energi * Email: syatria.putra@pertamina.com

Abstract. As the world in ambition to limit the increment of global temperature not reaching as high as 1.5° C, Production and consumption of oil and gas currently account for over half of global greenhouse gas emissions associated with energy use. Carbon sequestration is one of crucial element of clean energy transition since this technology contributes to both directly reducing emissions in high energy intensity economic sectors and removing CO₂ to balance emissions that cannot be avoided.

Making the opportunity of Indonesia's G20 Chairmanship, PERTAMINA leads the opportunity to establish the carbon sequestration project in nation. With the spirit of synergy and collaboration with partners, technical aspect and technologies are being studied and simulated in order to help decision makers to decide appropriate action and affordability of carbon sequestration project.

It is important to understand not only the subsurface structure of the field itself but well integrity to ensure that CO_2 will able to inject and stays underneath for the intended period of storage take a critical consideration not only in safety but cost parameter. Material including casing, tubing and or other tubular goods points on how will the well last. This paper will using case study method by analyzing and mitigating corrosion of well material. As corrosion as material may degrade with time depending on the downhole temperature, pressure, stress conditions, and formation fluids. CO_2 is very corrosive when it encounters aqueous environment and driven by high pressure, temprature, flow rate, and pH, will react with cement and steel resulting in carbonation which can lead to steel rusting. In addition to rusting, it has possibilities to form cracks on well structure and cause the leakage of CO_2 .

In consequence, several factors had to be considered, including the choice of material. Selection of wellbore material play an important role in reducing the risk of corrosion. Strarting with the evaluation of corrosion causes (from partial pressure of CO_2), low life cycle cost, design (including impact of water's and gasses' like SO_x , NO_x , O_2 , and H_2S appearance), availability, mechanical and physical properties of material. The results of this study are well design and materials that should have been used, based on the case study that had been done. By utilizing ferrous or non ferrous metal, and selection of composite and polymer are alternatives to decrease the possibilities of corrosion. Additionally, corrosion caused by the presence of sulphur gasses can be avoided by using a protective layer like iron sulphide film. Regardless of the wellbore material, well needs to be on steady state condition in order to maintain well and CO_2 condition.

Keyword(s): Casing, CCS/CCUS, corrosion, material selection.

©2022 IATMI. All rights reserved.

1 Introduction

Considering the climate change that has been one of the biggest concerned on this planet, Paris Agreement clarified about the importance of limitation on increasing global temperature not as high as 1.5° C. Thus limitation could have been achievable by decreasing emission of CO₂ for about tens Gt/year (IPCC, 2018), one of which is by using the Carbon, Capture, (utilization), and Storage (CCS/CCUS) technology. In general, CCS/CCUS is the injection and capturing carbon (e.g. CO₂) utilizing sub surface storage site supported by the geological condition of the site. The carbon that had been injected can be captured permanently (CCS), or stored to be utilized by changing the form of carbon to be valuable products (CCUS). In addition to the CCS/CCUS advantages, it is important to observe its components such as well design and materials, as will be discussed on this paper.

Well design is very crucial if we mention about the health, safety, and environment (HSE) aspect (Marbun et al., 2021). Appropriate design of well was intended to mitigate any failure, such as corrosion of well material that potentially occur by the appearance of aqueous environment and forming carbonate acid (H₂CO₃) which is very corrosive (Li et al., 2019). That corrosion reaction might lead to loss (leakage) of CO_2 either from cracks or any wellbore failure. Besides the HSE aspects, the design of well was considered from the availability of materials. Thus, could also related to the economical aspect on a certain life cycle cost.

According to those statements above, it is clear that well integrity risk assessment is needed for injection or production well, especially in Indonesia. Indonesia, which is still in a "compiling phase" of the CCS/CCUS project's regulation and require several standards, particularly on a technical aspect, like for the production or injection well design and material. Even in worldwide, there are no spesific standard for the CCS/CCUS well. In order to improve the CCS/CCUS project in Indonesia, the risk assessment is needed to indicate the consequences through risks that potentially happen on the wellbore. Subsequently, the International Standard Operation (ISO) and other standards from hydrocarbon injection and/or production well, that will be mentioned, could be applied as a prevention and mitigation of the well failure on the CCS/CCUS project.

2 Methods

Below the list of typical inputs to be considered to provide proper material selection:

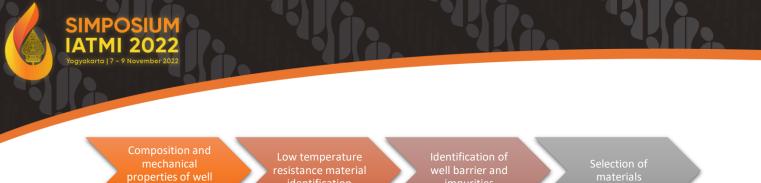
- **CO₂ stream composition** (mainly H₂O, O₂, NO_x, SO_x, H₂S, CO, H₂): clear impact on corrosion and CO₂ stream phase diagram. A worst-case composition shall be assessed, especially when commingled streams coming from two or more sources are mixed together.
- **Operational window** as expected range of temperature and pressure is key to determine the formation of free water or strong acids. This window shall not be limited to expected conditions in steady state, but shall also include transition phases as commissioning, shut-in and restart.
 - o **Minimum temperature** in case of shut-in or during injection of dense CO_2 in depleted well: it will have clear impact on material toughness performance required.
 - o **Maximum temperature and pressure** will impact localized corrosion and stress corrosion cracking at bottom hole.
- Formation water composition:
 - o Chloride content will impact localized corrosion of high alloy steel.
 - o Bicarbonate will impact in situ pH.
- Specified Minimum Yield Strength (SMYS) is the pipe mechanical strength required by well design to guarantee the integrity of the completion. Yield strength level may be limited in

Sekretariat IATMI Pusat Komplek Perkantoran PPTMGB Lemigas. Gedung Penunjang Lt 2 Jl. Ciledug Raya Kav 109, Cipulir, Kebayoran Lama, Jakarta 12230 Telp (021) 7394422 ext 1914 simposium.iatmi.or.id

sour environment.

These following standards (Table 1) are the main references that are used on hydrocarbon exploration wells and applicable for material selection candidate on CO_2 injection and production well. References that internationally has been used to mitigate the risks that potentially occur when injection or production phase on hydrocarbon exploration's well. Identification and analyzation of the risks comprise the existing and/or new wells. The existing or even new wells also need an assessment based on standards below to ensure the nonappearance of leakage between casing and cement.

Overarching Aspects	Capture	Transport	Storage
ISO/TR 27915: Quantification and	ISO/TR 27912: CO2 capture	ISO 27913: Pipeline	ISO 27914: Geological
verification	systems, technologies and	transportation systems	storage
	processes		
ISO/TR 27917: Vocabulary - cross	ISO 27919-1: Performance	DNV-RP-F104: Design	ISO 27916: CO2 storage
cutting terms	evaluation methods for	and operation of	using enhanced oil recovery
	post-combustion CO2	carbon dioxide	(CO2-EOR)
	capture integrated with a power plant	pipelines	
ISO/TR 27918: Lifecycle risk	ISO 27919-2: Evaluation		ISO/TR 27923: Geological
management for integrated CCS	procedure to assure and		storage of CO2 injection
projects	maintain stable		operations and
	performance of post-		infrastructure
	combustion CO2 capture		
	plant integrated with a		
	power plant		
ISO/TR 27921: CO2 stream	ISO/TR 27922: Overview of		ISO/TR 27926: CO2-EOR -
composition	CO2 capture technologies in		Transitioning from EOR to
	the cement industry		storage
ISO/TS 27924: Risk management			
for integrated CCS projects			
ISO/TR 27925: Flow assurance			
ISO 17348: Petroleum and natural			
gas industries — Materials			
selection for high content CO2 for			
casing, tubing and downhole			
equipment			
ISO 15156: Petroleum and natural			
gas industries — Materials for use			
in H2S-containing environments in			
oil and gas production			


Table 1. Standards related to the material selection candidate for CO₂ injection and production well.

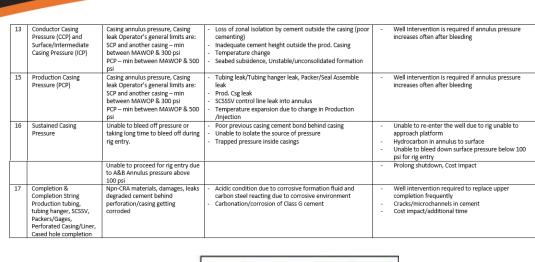
3 Analysis of Risk Assessment

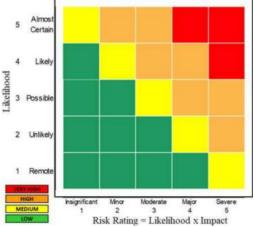
Through the identification and analysis of drilled borehole materials (existing well), low-temperature resistance, and barrier of well, can make decisions on materials selection based on thus aspects as in Figure 1. Existing wells and/or new wells would be qualitatively identified, rather from the age, material, or even the environment. Based on Parimal et al. (2021) that had been modified, the assessments of wellbore risk are including analyzing of failure and risk that potentially occur on several risk scope (Tabel 2).

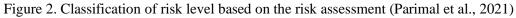
Sekretariat IATMI Pusat Komplek Perkantoran PPTMGB Lemigas. Gedung Penunjang Lt 2 Jl. Ciledug Raya Kav 109, Cipulir, Kebayoran Lama, Jakarta 12230 Telp (021) 7394422 ext 1914 simposium.iatmi.or.id

Figure 1. Workflow of material assessment.

Based on the risk assessment bellow, there are 17 scopes that necessarily considered on production or injection well of CO_2 . Afterwards, the assessment is being evaluated with risk rating diagram that was obtained from matrix between likelihood and impact of each section or risk's scope (Parimal et al., 2021) (Figure 2). Besides to indicate failure and leaking potential, risk level that had been qualified based on assessment would gave clues to selection of well material. The higher level of section or scope will improve the efficiency in one life cycle cost by indicate the priority of scope that needs to be maintained first.


No.	Risk Scope	Potential Risk	Causes	Impact/Consequences
1	Well Age	Wells that are in operations for>25 years	Well deterioration Casing/Cement deterioration Wellbore construction practices	 Compromised well integrity Potential for loss of operating time due to unplanned shut down Cost impact/remedial workover jobs
2	Wellbore trajectory penetrating CO2 storage & permeable zones below storage Well construction	CO2 leakage risk from the CO2 storage reservoir up to the surface Corrosion of casing-cement- formation composite structure Losses	 Wellbore casing may come in contact with corrosive reservoir fluids Due to corrosion, casing-cement-formation composite structure may get deteriorated Insufficient mud weight 	Compromised well integrity Potential for loss of operating time due to unplanned shut down Cost impact/remedial workover jobs Non-productive time incurred
	challenges/NPT	Tight hole Lost hole/BHA Sidetrack due to wellbore stability	Drilling experience and practices Wellbore collapse/wellbore stability	 Sidetrack Extensive casing wear reducing original casing strength
5	Wellhead	Unable to rig up on well, Material not suitable for CO2 Injector.	 Degraded, Corrosion damage Wellhead tilted 	 Unable to enter and re-complete or P&A operation Potential for loss of production/injection due to unplanned event Cost impact/Remedial workover jobs
6	Well head subsidence/uplift	Vertical movement > +/- 5cm	Tectonic activities, Reservoir compaction, Mechanical failure, Cement failure Thermal effect Casing/Conductor corrosion Fluid migration	Damage to the grating around the wellhead. Load transferred to the weaker structure. Casings in compression leading to casing collapse/Cement failure and possible loss of pressure integrity
7	Wellhead material	Corrosion at wellhead, wellhead valves and piping due to corrosive injection fluids	 Corrosion damage Leaks 	Compromised well integrity Potential for loss of production/injection due to unplanned shut down Cost impact/remedial workover jobs
8	Wellbore construction – casing material <u>Conductor</u> <u>Surface Casing</u> Intermediate Casing	Deformation Corrosion damage Leaks	Mechanical problem encountered while drilling resulting in casing wear and reduced strength Inadequate TOC across shallow permeable zones Poor centralization and cemented casing Casing deformation/cement shrinkage Remaining casing strength	Compromised well integrity Potential for loss of production/injection due to unplanned shut down Cost impact/remedial workover jobs
9	Wellbore construction – casing material Production/liner casing	Deformation Corrosion damage Leaks	Non CRA material exposure to CO2 Degrade cement behind the production casing Poor cemented casing	 Compromised well integrity Potential for loss of production/injection due to unplanned shut down Cost impact/remedial workover jobs
10	Cementing	Sustained Casing Pressure Ineffective mud removal during cementing causing channel	 Poor mud removal/channels in cemented annulus Inadequate cement across shallow permeable zones 	Compromised well integrity Potential for loss of production/injection due to unplanned shut down Cost impact/remedial workover jobs
		(Sustained casing pressure CCP, SCP higher than threshold, PCP lower than threshold)	Inadequately engineered cement slurry design not considering long term stresses and mechanical properties of set cement Poor centralization or no centralization Inadequate cement volume/excess volume of cemented casing Poor wellbore condition due to excessive borehole breakout or washout Micro annulus / cement shrinkage Cyclic wellbore pressures and temperatures; or cement degradation in corrosive environment	Micro annulus behind casing Flow behind casing Casing and cement corrosion
11	Cement material	Non-CO2 resistant/ Class G/ Class H cement will deteriorate relatively earlier than geopolymer/ Slag-flex cement	Casing in contact with formation due to insufficient centralization Poor mud properties used used-high PV&YP Inadequate or no pipe movement Low pumping / displacement rates Hole enlargement Poor Spacer train design	Inadequate isolation of the overlying formations Gas channels, and high annulus pressure during drilling and production Potential well integrity issue


Table 2. Wellbore risk assessment on several risk scope (modified from Parimal et al., 2021)


Sekretariat IATMI Pusat Komplek Perkantoran PPTMGB Lemigas. Gedung Penunjang Lt 2 Jl. Ciledug Raya Kav 109, Cipulir, Kebayoran Lama, Jakarta 12230 Telp (021) 7394422 ext 1914 simposium.iatmi.or.id

material analysis

4 Well Material Selection Based on Assessment

In order to minimize the potential of risk, material selection is very necessary for the injection and production wellbore of CO₂. As it mentioned on Figure 1, identification is required, especially for corrosion risk. Injection of gas, either dry or wet, have a different selection of material. Refered from ISO standards (Table 1), wet gasses is more corrosive when it encounter the aqueous environment owing to low pH and needs carbon resistant alloy (CRA) to avoid the corrosion. Spesific types of CRA are listed on ISO 13680 about CRA for casing, tubing, coupling stock, and other accessory materials. Instead of using CRA, dry gas only required carbon steel or low alloy steel (ISO 17348).

Concerning the appearance of sulphur gasses, materials are written in ISO 15156 which is about all parts of wellbore integrity. Actually, the lab test has not been done for materials selection in the presence of sulfide stress cracking (SSC). Whereas SSC is corrosion that cause cracking of metal by presence of sulphur and water. ISO 15156 also applied for any gasses like NO_x , SO_x , and any contaminant. If we refers to other parameter, corrosivity also influenced by partial pressure. Based on the international standard operation 17348, dry gas injection could only use carbon steel if the partial pressure is higher than 1 MPA. It caused by the condensation of water when it becomes to the transient or upset condition.

Sekretariat IATMI Pusat Komplek Perkantoran PPTMGB Lemigas. Gedung Penunjang Lt 2 Jl. Ciledug Raya Kav 109, Cipulir, Kebayoran Lama, Jakarta 12230 Telp (021) 7394422 ext 1914 simposium.iatmi.or.id

If we do the material selection based on the chromium composition of steel, there are at least two aspects that needs to be appraise, which are cost and efficiency. Higher composition such as 25Cr or 28Cr have more capability to the local corrosion resistance but also need more cost. On the other side, 13Cr has less capability to resist the local corrosion, instead it might be more economic rather than 25Cr and 28Cr.

5 Conclusion

CO₂ injection and storage present specific risks related to material corrosion and temperature embrittlement. While material selection rules are well established for H₂S and CO₂ environment, there are significant differences to be considered when injecting CO₂ stream with impurities such as O₂, NO₂, SO₂, CO and H₂. The use of 13Cr material is not recommended in case of low temperature or in presence of impurities due to its low Charpy values but 13Cr material may be a cost-effective solution for CO_2 stream with limited impurities and temperature drop while future developments on Equation of State of CO₂ with impurities will be required to predict in-situ condition, corrosion modelling and material testing environments for this application. Finally, extensive testing program is require to define limits of impurities for materials cost optimization and assuring well's integrity. Well integrity with risk assessment is needed for the improvement of CO₂ injection and production activities. The risk assessment would obtain analysis of risk level based on each risk section or scope and could show which priority of well's integrity to maintain and affect the efficiency of one life cycle cost. Besides, the analysis and identification was conducted on risk of corrosion that generally caused by water (aqueous environment). In order to prevent and mitigate the corrosion, it is important to concentrate on material selection. Material selection which had been done was based on several standards that was mention on section 2 (Methods). This study could be a recommendation of the general basis of CCS/CCUS regulation in Indonesia.

Refrences

[1] M. E. Boot-Handford et al. 2014. Carbon capture and storage update. Energy Env. Sci, vol. 7, no 1, p. 130-189. doi:10.1039/C3EE42350F

[2] R. Barker, Y. Hua, et A. Neville. 2017. Internal corrosion of carbon steel pipelines for dense-phase CO_2 transport in carbon capture and storage (CCS) – a review. Int. Mater. Rev., vol. 62, no 1, p. 1-31, janv. doi: 10.1080/09506608.2016.1176306

[3] Marbun, B. T. H., et. al. 2021. Improvement of borehole and casing assessment of CO₂-EOR/CCUS injection and production well candidates in Sukowati Field, Indonesia in a well-based scale. Energy Reports 7: 1598-1615. doi: 10.1016/j.egyr.2021.03.019

[4] Parimal, A. P., et. al. 2021. Safeguarding CO₂ storage by restoring well integrity using leakage rate modelling LRM along wellbore in depleted gas fields offshore Sarawak. SPE-205537-MS.

[5] Asian Development Bank. 2019. Carbon dioxide-enhanced oil recovery in Indonesia: An assessment of its role in a carbon capture and storage pathway. doi: 10.22617/TCS190600

