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Abstract. Electric Submersible Pump (ESP) is a highly effective artificial lift method for boosting oil 
production in both onshore and offshore fields. The ESP maintenance will be conducted regularly as other 

artificial lift to prevent costly production disruptions due to unexpected pump failures. Many diagnostic 

methods have determined the ESP system’s status by using the automation system; however, these methods 
usually only provide backward-analysis after failure events have occurred. This paper involves acquired 

real-time data to establish an analytical methodology to detect impending ESP failures. 

The classification will be done on ten minutes-interval data forecasting performance, which shaped up into 
slope. This is primarily achieved using Supervised Learning Technique; Logistic Regression, Random 

Forest, Decision Trees, K-Nearest Neighbors, and Recurrent Neural Network Technique: Long-Short Term 

Memory. 

The models will be built based on individual distinct parameter’s characteristics of nine status consists of; 
low PI, pump wear, tubing leak, higher PI, increase in frequency, open choke, increase in water cut, sand 

ingestion, and closed valve with an accuracy rate over 90%. These automation and control systems require 

constant surveillance by a human operator to verify that all processes are running normally. Furthermore, 
the abnormal behavior is identified in advance, and the operators can early determine the best corrective 

action to avoid an ESP’s failure built upon the recommendations attached. It is the human operator’s 

responsibility to react to any alarm conditions that occur during operation. 
This introduced technology is an effective way to monitor the ESP system that leverages Artificial 

Intelligence. The operator can rely on the built surveillance system’s ability to detect abnormal behavior, 

allowing the operator to focus on higher priority tasks. Moreover, an engineer’s significant advantages are 

taking pre-emptive action to avoid failure and generating billions of revenues. 
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1. Introduction 

Over 90% of wells go on the artificial lift at some point during their lifecycle. Artificial lift techniques are 

employed when reservoirs do not have sufficient energy to naturally produce oil or gas to the surface or at 

desired economic rates. Among artificial lift options, ESPs are often considered efficient and reliable for 

pumping high volumes from greater depths and higher temperatures. ESPs represent a significant CAPEX 

and OPEX cost item for operators [1].  

Conventional ESP installations typically do not have downhole flowmeters installed as part of the 

equipment configuration. Some ESPs have downhole sensor subassembly used to monitor the health and 

performance of the ESP. An increased level of monitoring comes by connecting the downhole sensor to a 

SCADA (Supervisory Control and Data Acquisition) system. The system continuously monitors well 

behavior to provide a basic level of automated control in the oil and gas industry for the last decade [2]. 
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Despite their design, engineering, and manufacturing to be rugged and highly reliable, ESP pumps can fail 

and do so unexpectedly. When that happens, given the complexities and high costs associated with 

exchanging a failed sub-surface installed pump with a new one, the result is typically prolonged downtime 

and associated production losses. 

The solution to overcome this problem is to use big data, which has been a trend in the previous decade. 

Accumulation of data from years of spreadsheet database archiving has made industries gather valuable 

patterns and work processes that led to success stories [3]. By utilizing this data, industries have advanced 

in handling their problems; avoid ESP shutdowns by moving from a supervised approach towards failure 

mitigation to a more practical approach based on early predictive analysis and prevention. In this paper, an 

automated early predictive analysis built upon a real-time dashboard is proposed to monitor and safeguard 

ESP operations by focusing on patterns that deviate from expected normal behavior. Such a system can 

maximize equipment availability, save millions of dollars in maintenance and lost production, and eliminate 

the need to deploy many field personnel and instruments to monitor and investigate ESP operations [4]. 

2. Methodology 

Several parameters significant to ESP operation were used as input variables for the analytical model. These 

included well inflow parameters, such as fluid pressure and temperature at the pump intake, tubing pressure, 

flow rate, and tubing diameter; pump performance parameters, such as discharge pressure, pump setting 

depth, stages, pump type; and motor diagnostic parameters, such as vibration and motor temperature. 

Two different data records were tagged for the study. These are: 

1. Data records containing time-series information of various parameters on downhole gauges. The 

data was recorded at a one-minute interval for one well. 

2. Data records containing information on the time when a trip or failure occurred in that well. 

Those data come from seventeen different wells equipped with lift watchers provided by four different 

types of ESP. This record was used to study the behavior of the patterns based on the selected parameters 

obtained from the historian long before, immediately before, and precisely during the trip or failure [4]. 

2.1 Downhole Sensor Parameters Forecasting 

This step aims to predict the downhole sensor parameters; motor temperature, current consumption, motor 

vibrations, temperature & pressure for both the intake & discharge sections of the pump for the 1-day ahead. 

The plenteous amount of raw data from the lift watcher with different time intervals leads to the appearance 

of noises needed to be down sampled for smoothing the generated line. 

Records of discharge pressure with the time interval of 11th April 2020 02.10 PM, precisely 3 months before 

trip happened, are selected to be analyzed for further forecasting to enable the model gains an understanding 

of the well characteristics. Then, the data will be split into a 70:30 ratio of training and test datasets to learn 

the relationship between independent variables and the target variable in terms of mathematical function or 

is captured as a set of rules. In this case, the program will use Long-Short Term Memory (LSTM), supports 

multivariate time series; and Seasonal Autoregressive Integrated Moving Average (SARIMA), supports 

univariate time series data with a seasonal component.  

2.2 Flow Rate Reconstruction 
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Flow rate is a component that needs to be considered for each value on downhole sensor parameters reading 

on failure prediction of ESP. Infrequent well tests carried in the field causing the flow rate will be estimated 

using the provided model from the related company for each point of sensor data. 

The data needs for the flow rate reconstruction includes static data as well profile and dynamic data which 

may be continuous and time-series data. ‘Static’ implies that there is no change in the data unless under 

particular circumstances for an extensive period in the life of ESP well. It consists of pump installation data 

and well-completion information. While the information of dynamic data is natural as it represents the 

well’s behavior and pump operation, which consists of: 

1. Downhole Gauge Data: Pump discharge pressure, pump intake pressure, ampere reading, and 

intake temperature. 

2. Surface Pressure Gauges Data: Casing pressure and tubing pressure. 

The pre-processing data involves 121,462 raw data, split into an 80:20 ratio of training and test datasets, 

and started with scaling all the numerical features into range 0 and 1, then performing hyperparameter 

tuning to determine the optimal values for a given model. 

The k-nearest neighbor, a chosen model to regress the virtual flow rates, is one of the algorithms that the 

learning is based on “how similar” a data from others and goes together with a large amount of data. 

2.3 Early ESP Failure Prediction 

Machine learning algorithms tends to perform well in the majority class but poorly in the minority class on 

imbalanced data. In this model making, the method of oversampling used is Synthetic Minority 

Oversampling Technique (SMOTE); the minority class with fewer data recorded can be matched up with 

the majority class with the most data which illustrated on Figure 1.  

The well-data-integration engine will apply multivariate analytical techniques on identifying patterns and 

correlations between the variables. These steps will be done using supervised learning; logistics regression, 

random forest, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and decision tree. The model 

accuracy using logistics regression, random forest, Support Vector Machine (SVM), K-Nearest Neighbor 

(KNN), and decision tree are 86.16%, 91.96%, 90.88%, 93.8%, and 90.85% respectively. The obtained 

accuracies are quite similarly excellent; therefore, the confusion matrix for those machine learnings is 

generated to observe what kind of errors they are making. The result seems similar for random forest, k-

nearest neighbor, and decision tree, they are reaching a 100% rate in the majority of the categories shown 

in Figure 2.  

A common problem at model application stage is that the prepared data consists of multiple units 

corresponding to each real-time parameter of the well. Accordingly, the data transformed into slope using 

the percentage change between the current and a prior element. If the current well data show a trend that 

matches the pattern for a historic failure, the algorithm generates an alarm for the specific problem and 

delivers it to the field technicians any time of day. There are nine types of problems that can be predicted; 

low Productivity Index (PI), higher Productivity Index (PI), pump wear, tubing leak, increase in frequency, 

open choke, increase in water cut, sand ingestion, and closed valve (SSSV/Sub-Surface Safety Valve). The 

algorithm allows for developing an agreed-upon, mathematically tested pattern for all of the common ESP 

failures. 

3. Results and Discussion 



 

 
“Kebijakan, Strategi dan Teknologi Tepat Guna untuk Meningkatkan 

Pengurasan Lapangan Minyak dan Gas di Indonesia“ 

 

3.1 Downhole Sensor Parameters Forecasting 

The process will be started using Auto SARIMA provided by Python module. The result of model selection 

is detailed with (1) as p, (1) as the difference, and (0) as the q, and (0,1,0,4) as the seasonal element. 

Followed by the next model, namely Long Short-Term Memory, with two hyperparameters of (1) as the 

batch size and (50) as the maximum epoch. Epoch is entire dataset is passed forward and backward through 

the neural network, while batch size is total number of training examples present in a single batch. 

The prediction will be evaluated using Root Mean Squared Error (RMSE) to check how close the observed 

data points are to the model's predicted values [5]. The obtained value of Root Mean Square Error (RMSE) 

from SARIMA and LSTM are 21.4 and 2.5888 respectively, less than the standard deviation value with 

number 121.6, indicating the model acceptance for further forecasting. Later on, the forecasting results will 

be cohered with the original dataset on the corresponding time to measure the forecasting accuracy using 

percentage error to validate the program's credibility. The obtained value of Mean Absolute Percentage 

Error from SARIMA and LSTM are 6.1% and 0.889% respectively. According to Criteria for Model 

Evaluation [6], this is categorized as ‘highly accurate forecasting’, which means the reliability of this 

program is pretty much competitive when compared to commercial software; the result is also eligible to 

be used for further analysis.  

The program will be used Long Short-Term Memory (LSTM) as the selected model as it provides better 

forecasting accuracy and enables an automate multivariate analysis to the sensor data. The forecasting data 

points, which illustrates in Table 1 are convenient to the model’s predicted values with percentage error 

also lies at 0.6% evenly, while the vibration has the highest error amongst all with 7%. It happens because 

the vibration has low values, so a slight difference would lead to a considerable percentage error. Thereafter, 

the forecasting results will be used as input at the flow rate reconstruction represented in Table 2. 

3.2 Flow Rate Reconstruction 

The K-Nearest Neighbor (KNN) regressor as the selected model will be fitted on the training dataset, 80% 

of the data, as a procedure to see whether the model suits the test dataset. It is resulting up to 99.59% 

accuracy, which possibly overfits. Overfitting means that the created model is too dependent on the training 

data, this can cause an overconfidence inaccuracy. The blind data test was conducted to validate the model 

accuracy by predicting another well test data with 43 various wells resulting in 5% error on the average.  

The percentage error can still be accepted, and the model will be applied to the obtained data in the previous 

section to predict the virtual rate. 

Pressure drops, tubing diameter, and pump installation are the essential components for rate calculation. 

However, due to the limitations of the conducted well test, the tubing pressure will be estimated from the 

conversion of discharge pressure from each sensor reading as in the equation (1) and equation (2). 

𝑇𝑝 = 𝐷𝑝 − ∆𝑃 (1) ∆𝑃 = 0.433 × 𝑃𝑆𝐷 × 𝑆𝐺 (2) 

The predicted values, shown in Table 3, were then compared to the nearby flow rate obtained from well 

test data with a value of 282.5106, which is quite identical. 

3.3 Failure Prediction 
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Based on the company’s historical data, the possible failure that might be procured on the pump is a sand 

ingestion because of loss flow happened on the well 3 days after the prediction. The chosen model is k-

nearest neighbor because of the compatibility of the predictive result with the company’s history data.  

Eventually, the surveillance system could predict the possible failure of the Electric Submersible Pump 

(ESP) by 1st August 2020 at 12 AM, while the company suspected the failure on 3rd August 2020 before 

the existence of this system. The validation was done several times using data from different wells. All of 

the results from the predictive models are the same as the result from the company’s guidelines. 

The logic driving the notification system is based on pattern recognition for event detections and pre-

diagnostic applications. These notifications allow for fast and automated operational corrections to maintain 

optimal pump operation. An illustration of the output of the surveillance system as a whole, including the 

prescription of preventive action for the specific failure prediction, is shown in Figure 3. 

4. Conclusions 

This study successfully proves the huge impact of leveraging Artificial Intelligence on ESP Monitoring 

process. Based on the result analysis, it can be concluded: 

1. Forecasting the downhole parameters installed on the Electric Submersible Pump (ESP) well is 

done using LSTM for 1-day ahead with acceptable scale-dependent error and percentage error, 

which is also categorized as highly accurate forecasting and eligible for further analysis. 

2. The virtual flow rates are reconstructed using a k-nearest neighbor regressor based on “how 

similar” data from the provided well test data with an accuracy rate of 95%. 

3. Machine learning with a k-nearest neighbor is chosen to be the surveillance system of detecting 

abnormal data with 93.8% and generate the predictive results compatible with the company’s 

historical data. 

The early failure prediction system then could be built upon SCADA system to provide real-time 

monitoring of patterns that deviate from expected normal behavior. 
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Figure 1 Diagram of Borderline Synthetic Minority Oversampling Technique (SMOTE) 

(a) The original distribution of the circle data set (b) Selection of borderline minority samples (solid blue squares) (c) 
Generation of borderline synthetic minority examples (hollow blue squares) 

 

 

 

Table 1 Sample of Prediction Results and Error Calculation 

Well Reading Time Real Discharge Pressure Predicted Discharge Pressure Error (%) 

FHB-03 2020-08-01 01:10:00 3839.683 3823.097900390625 0.4319% 

FHB-03 2020-08-01 01:20:00              3848.477 3823.31591796875                 0.6538% 

FHB-03 2020-08-01 01:30:00 3854.760                 3823.573974609375                0.809% 

Table 2 The Sample of Forecasting Result as Input for Rate Reconstruction 

Well Reading Time 
Average 
Ampere 

Intake 
Pressure 

Discharge 
Pressure 

Intake 
Temperature 

Motor 
Temperature 

Vibration 

FHB-03 2020-08-01 01:10:00 25.14 476.02 3823.09 286.56 318.44 0.76 

FHB-03 2020-08-01 01:20:00              25.16 476.32 3823.31                 286.45 317.91 0.80 

FHB-03 2020-08-01 01:30:00 25.08 476.23 3823.57                286.57 317.94 0.75 

Table 3 Rate Re-Construction Results 

 

Reading 
Time 

Casing 
Pressure 

Tubing 
Pressure 

PBHP PBHT 
Ampere 
Reading 

Pump Type Stages HP Volt Amp PSD TUBINGID 
Virtual 
Rate 

2020-08-01 

01:00:00 
50.02146 615.7779 476.0293 286.5625 25.14661 low 359 150 1672 58.7 10109 2.992 279.7837 

2020-08-01 
01:10:00 

50.02146 615.9668 476.325 286.4519 25.16164 low 359 150 1672 58.7 10109 2.992 279.7756 

2020-08-01 
01:20:00 

50.02146 616.1224 476.2307 286.5748 25.0839 low 359 150 1672 58.7 10109 2.992 279.7478 

Figure 3 Output of the Surveillance System Figure 2 Normalized Confusion Matrix 

Figure 2 Normalized Confusion Matrix 


