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Abstract. For field that deployed clusters of Electrical Submersible Pump (ESP) wells, implementing a 

robust surveillance system that could serve as early warning detection, real-time monitoring, and 

optimizing could give significant advantages. In establishing that system, real-time fluid rate becomes one 

important aspect but it cannot be obtained yet due to the limited frequency of conventional well test. 

However, ESP wells which have downhole sensor give valuable benefit to engineers as downhole sensor 

generates non-stop streaming data that represent ESP condition. Therefore, an idea to convert this non-

stop streaming data into real-time fluid rate which could serve as an alternative to the conventional well 

test arises. An innovation that is discussed in this study is proposed to predict a virtual flow rate by 

utilizing the collection of data from ESP real-time sensor and wells information which simultaneously 

train and run a selected machine learning model. 

In this study, the dataset collected from formation layers, ESP specification, tubing property, ESP real-

time sensor, wellhead pressure, casing pressure, and historical well test data have been cleaned up before 

it is used to train model and predict the result once it is deployed. Afterwards, feature engineering is 

conducted to reduce the dimensionally of data. With the value of R-squared as indicator, six regression 

models comprised of K-Nearest Neighbor (KNN), Support Vector Machine Regression (SVR), Random 

Forest Regression (RFR), Extreme Gradient Boosting (XGBoost), Linear Regression, and Elastic Net are 

compared to choose the best predictive model after parameter optimization for each model is applied. 

This study used 14,915 data points from 12 mature wells in the Offshore Southeast Sumatera field to train 

and test the model. The sensitivity study done yielded SVR with the penalty parameters (C) value of 1000 

and gamma (γ) value of 0.1 as the best algorithm and parameters for this case. The model reaches 96.05% 

level of accuracy when it is evaluated with 176 point of historical production test data. This study also 

shows that the model has succeeded to estimate the value of unknown fluid rate when the wells are not 

being tested.  

The novelty of this paper is associated with the application of new machine learning model that can 

estimate ESP wells virtual flow rate in Offshore Southeast Sumatera. This study also shows the 

importance of data preparation, parameter optimization and feature engineering in achieving the proper 

model for prediction. Post-deployment, the model must be continuously updated its data especially when 

it is unable to approximate fluid rate properly.  
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1 Introduction 

Electric Submersible Pump (ESP) has become one of artificial lift method that is commonly used in 

mature wells. Mature wells are the wells which have exceed the peak of production time and lack of 

energy to lift reservoir fluid to the surface. Therefore, ESP is installed at the certain depth of the well to 

give additional pressure to keep fluid flowing. Nowadays, ESP has widely known as one of artificial lift 

with the highest installation and its significant contribution to total oil production in the world. 

Establishing a robust surveillance system which could serve as early warning detection, real-time 

monitoring, and optimizing could give significant advantages. Since this system allows engineers to take 

immediate action when pump performs below desired condition.  

Real-time fluid rate becomes one important aspect in ESP surveillance system. However, it cannot be 

obtained yet as fluid rate from the production flow test or known as well test does not represent real-time 

condition of ESP as shown in Figure 1. As well test consumes 3 – 24 hours for flowing the reservoir fluid 

from the well to the test separator or the multiphase flow meter and it also has limited frequency 

especially if the well is located in remote area. Those reasons make fluid rate from conventional well test 

cannot be used to identify ESP real-time performance.  

Nevertheless, ESP wells give valuable benefit to engineers with the non-stop streaming data generated by 

ESP downhole sensor. ESP downhole sensor captures information such as pump intake pressure, pump 

discharge pressure, pump intake temperature, motor temperature and electrical current up to hundreds of 

data in the daily operation. Then, an idea to convert this non-stop streaming data into real-time fluid rate 

by using supervised machine learning arises. Supervised machine learning is able to create rules based on 

dataset patterns to get the value of fluid rate using new input data. 

In this study, the dataset is collected from ESP real-time sensor data and well information in M Field 

which is located in Offshore Southeast Sumatera as case study to illustrate the implementation of 

supervised machine learning method. Supervised machine learning regression which consists of K-

Nearest Neighbor, Support Vector Machine Regressor (SVR), Random Forest, Extreme Gradient 

Boosting (XGBoost), Linear Regression, and Elastic Net is used to predict virtual flow rate in ESP wells. 

Those regression model are simultaneously trained and compared their accuracy after being evaluated 

with historical production test data. Afterwards, predictive model is selected based on the highest level of 

accuracy (average R-squared of test data) and the lowest over-fitting tendency. Afterwards, the chosen 

model is used to estimate fluid rate value when the well is not being tested. 

2 Methodology 

2.1 Data Preparation  

As shown in Figure 2, this study begins with data preparation which consist of gathering data and data 

preprocessing. In this stage, the available data is collected and chosen based on domain knowledge 

considered to have impact on fluid rate in ESP wells. After all data required has been gathered, data 

preprocessing is conducted to clean up the raw data. 
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2.1.1 Gathering Data 

Gathering data becomes the most important aspect in building machine learning model as its quality and 

quantity will directly affect to the model. In this study, data is obtained from formation layers, ESP 

specification, tubing property, ESP real-time sensor, wellhead pressure, casing pressure, and historical 

well test of 12 mature wells in Offshore Southeast Sumatera for past three years, since January 2017 until 

January 2020. Formation layers gives information about the variation layers opened in each well while 

ESP specification tells about pump characteristic such as pump type, stage, power, and electrical voltage. 

Afterwards, tubing property gives information about the size of inner tubing diameter used for each well. 

Then, wellhead pressure and casing pressure data take into account because they are considered to give 

significant impact to fluid rate. Meanwhile, ESP real-time sensor provides downhole information such as 

electrical current, pump intake pressure, pump discharge pressure, pump intake temperature, and motor 

temperature. However, those sensor data must be converted into daily time first. Thereupon, the 

previously mentioned data is gathered in one frame and adjusted with the historical well data availability 

which act as labeled data. 

 

2.1.2 Data Preprocessing 

A collection of data from the previous step is known as raw data which may still contains missing value, 

outlier, error, and imbalance that should be handled first before constructing regression model. Missing 

value in the dataset can be detected by using missing value plot that shows empty data in the features. 

There are three ways in handling missing value. First, if one feature contains missing value more than 

50%, its feature should be eliminated. Second, if one feature has 10% until 50% missing value, the 

missing value should be replaced using median or mean by looking at its distribution first. Third, if the 

missing value has less than 10%, dropping the rows that contain missing value is taken to be an option. 

As shown in Figure 3 and Table 1, the highest missing value in the dataset is 6.37% so the third option 

for dropping the rows is selected. Then, the dataset which has been cleaned up its missing value is shown 

in Figure 4. Next, error values from ESP sensor indicated with constant value for long period, higher 

intake temperature value than motor temperature value, and higher intake pressure value than discharge 

pressure value are handled by eliminating their rows. On the other side, outlier values which also come 

from ESP sensor are removed by keeping the value within the following range considered to be the best 

practice of ESP in M Field. 

220 oF ≤ Intake Temperature ≤ 300 oF 

260 oF ≤ Motor Temperature ≤ 400 oF 

100 psi ≤ Intake Pressure ≤ 2000 psi 

1000 psi ≤ Discharge Pressure ≤ 5000 psi 

 

Afterwards, ESP type and tubing inner diameter are classified as categorical data as they do not have 

much variety in the dataset. Next, the last step of data preprocessing is numerical data imbalance checking 

identified using Multivariate Linear Regression that shows unbalanced coefficients. Multivariate Linear 

Regression equation is shown below and the table of coefficient can be seen in Table 2. 
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𝑄𝑓 = 𝑎.  (𝑆𝑡𝑎𝑔𝑒) + 𝑏. (𝐻𝑃) + 𝑐. (𝑉𝑜𝑙𝑡) + ⋯  + 𝑗.  (Casing Pressure) + Intercept 

 

One of the ways in dealing with the imbalanced dataset is by applying standard scale. Although, this 

technique is only work for normal distribution dataset and it cannot applied properly if there is feature 

that contains skew. In the dataset, ESP electrical current shows positive skew in the distribution plot 

while ESP intake pressure shows negative skew as shown in Figure 5. After knowing that the dataset has 

positive and negative skew, Yeo-Johnson transformation is used to normalize those features since this 

transformation technique can be applied well in both positive skew data and negative skew data. 

2.2 Model Development  

Next stage of this study is regression model development which consist of K-Nearest Neighbor (KNN), 

Support Vector Regression (SVR), Random Forest Regression (RFR), XGBoost, Linear Regression, and 

Elastic Net. Those models are built and tuned their parameters to achieve high level of accuracy which 

represents the most optimum parameters. The most optimum parameters are reached by using parameter 

tuning techniques such as Grid Search CV, Randomized Search CV, and Bayes Search CV which are also 

been validated by using K-Fold Cross Validation. 

2.2.1 Dataset Splitting 

After the dataset has been cleaned up, the next step to do is dataset splitting. Dataset splitting is the 

process done to prevent information outside the training dataset enter the model, known as data leakage. 

In this stage, the rows of clean data are shuffled 101 times first before they are split up into training data 

and test data. Training data size is set to be 70% while test data size is set to be 30% to ensure that the 

training data size is neither too high nor too low. Since higher training data size will lead model into over-

fitting problem while lower training data size will make model have under-fitting tendency.   

 

2.2.2 Regression Algorithm  

K-Nearest Neighbor (KNN) 

K-Nearest Neighbor (KNN) begins with storing all the training data so that its distribution pattern can be 

identified by machine. Afterwards, enumerating distance (N0) from the test data (x0) to all neighbor (K) 

value is carrying out before sorting the K value is done by increasing N0 from x0. Then, the output of test 

data or new data is determined by the majority label of the closest training data. Three matters which must 

be concerned are the number of K, the length of distance, and the type of weight whether uniform for 

each neighbor or influenced by distance. The number of K becomes the most important thing in KNN as 

it should be an odd number in order to prevent indecision. The illustration of KNN is shown in Figure 6 

where there are training data which consists of 5 yellow and 5 purple points. If number of K is 3, new 

data will be considered as part of Class B. On the other hand, if number of K is 6, new data will belong to 

Class A.  
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Support Vector Machine Regressor (SVR) 

Support Vector Machine Regression (SVR) separates the label data by creating the widest line (2D) or 

plane (3D). The widest line or plane is determined by measuring the margin, the distance between closest 

training data for each class or known as vector. The illustration of line SVR is shown in Figure 7. In that 

figure, the orange circle shows the value of 400 BFPD while the blue star shows the value of 200 BFPD. 

If the new data is on orange circle area, its value will be 400 BFPD. Meanwhile, if the new data is on the 

blue star area, its value will be 200 BFPD. 

Penalty parameter (C), kernel trick, and Gamma (𝛾) are the parameters used to adjust line and plane in 

SVR. Penalty parameter (C) determines the width of margin that directly affects to noise data. As shown 

in Figure 8, higher C value results smaller margin and it makes margin more sensitive to training data 

while smaller C yields wider margin and it makes margin become more tolerant to noise data. Next, 

kernel trick plays a role in transforming nonlinear data into other dimension such as 3D when the dataset 

cannot be separated well in 2D as shown in Figure 9. Furthermore, kernel coefficient (𝛾) in SVR which 

determines the precision of seeing the data is used to handle inappropriate scaling that yields data cannot 

be separated properly when it has high standard deviation (𝜎). However, higher value of kernel 

coefficient brings higher accuracy but it makes the boundaries fit too smooth that result into over-fitting 

problem as shown in Figure 10. On the other hand, lower value of kernel coefficient has lower accuracy 

due to under-fitting problem. 
 

Random Forest Regressor 

Random Forest Regression uses ensemble method for combining all output values from a number of 

decision tree and converting them into one final decision. This matter shows that random forest is the 

further development of decision tree which overcomes the over-fitting problem by performing bootstrap 

and aggregation called as bagging. As shown in Figure 11, random forest starts with building a number 

of decision tree that run in parallel through dataset which is randomly given a number of rules with 

replacement or known as bootstrap. Bootstrap reduces correlation and its decision yields lower variance 

as it will be averaged first. In developing this model, the number of trees (n_estimators), level of features 

(max_depth),the amount of data split or required in each node (min_samples_split or min_samples_leaf) 

and the amount of features to be split (max_features) are the common parameters adjusted to find the best 

model. Higher value of max_depth yields the possibility of over-fitting problem while higher value of 

n_estimators, min_samples_split, and min_samples_leaf reduce the variance of model. 

Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting or known as XGBoost is included as one of ensemble method where next tree 

boosts current attributes in order to diminish mistake from previous tree. Moreover, XGBoost also has 

already built with ability to handle missing value and work in large-scale data. XGBoost has three kind of 

parameters which are general parameters, boosting parameters, and task parameters. General parameters 

consist of number of thread (n_thread) and tree-based model (booster). Next, learning rate, maximum 

depth of tree (max_depth), random fraction of observation (colsample_bytree), and regularization term on 

weight (L1 and L2) belong to a bunch of boosting parameters which are tuned to improve the accuracy.  
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Learning rate should be maintained below one in order to avoid residual aggressive fitting. Similarly, 

deeper of maximum depth yields over-fitting as the model will easily fit with its residual as shown in 

Figure 12. 

Linear Regression 
 

Linear regression approximates the label data with linear approach between one label data and one or 

more independent variables. There are two kind of linear regression which are simple linear regression 

and multiple linear regression. Simple linear regression is linear regression that link two variables 

assumed have a linear relationship between independent variable and dependent variable as shown in 

Figure 13. On the other side, multiple linear regression has more than one independent variables which 

give contribution to the label value.  

Elastic Net 

Elastic net combines lasso and ridge method in applying regularization to the model as shown in Figure 

14. The combination of both techniques make Elastic net overcome lasso weakness in taking samples in 

high dimensional data by using the quadratic part of penalty. Quadratic penalty eliminates the limit of 

selected variables and encourages grouping effect that help the variables to be easily recognized. 

Moreover, Elastic net has higher number of predictor than the training data so that it helps model in 

enhancing the level of accuracy. 

 

2.2.3 Parameter Tuning 

Grid Search CV 

Grid Search CV is one of parameter optimization techniques which tries all possible parameter 

combinations in accordance with given grid values by user as shown in Figure 15. The grid values which 

are used in this study can be seen in Table 3. Despite it has better precision than other optimization 

techniques, this technique lacks of efficient as it gives try for all possible combinations. 

Randomized Search CV 

Another optimization technique applied in this study is Randomized Search CV. Unlike previous 

technique, this technique employs random combination that is set based on the given range of parameter 

values and number of iteration. This technique brings better computational but sometimes it miss the best 

parameters combination when the ranges of value are not set properly. The illustration of this technique is 

seen in Figure 16 while the given parameter values can be seen in Table 4. 

Bayes Search CV 

The last tuning parameter technique applied in this paper is Bayes Search CV. This technique utilizes last 

evaluation result to select the next evaluation value until the best parameters combination found. Its 

computational depends on the number of iteration and range of parameter values. This technique 
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commonly used to tuned parameters of Random Forest and XGBoost. The illustration this technique is 

shown in Figure 17 and the given parameter values can be seen in Table 5. 

K-Fold Cross Validation 

After optimizing the model parameters, cross validation is conducted to evaluate model performance. It 

has purpose to prevent luck in creating model such as getting high level of accuracy model without 

having validation. In this study, K-Fold Cross Validation is chosen as cross validation method that folds 

the amount of K and performs the number of K experiment. The number of fold is set to be 5 for every 

regression algorithm so each model will be validated 5 times. The illustration of K-Fold Cross Validation 

is shown in Figure 18 while the application K-Fold Validation in Grid Search CV, Random Search CV, 

and Bayes Search CV which are respectively shown in Figure 19. 

 

2.2.4 Feature Engineering 

Next step of this study is feature engineering which aims to enhance the accuracy of model by eliminating 

some features in the dataset. Feature engineering is divided into two steps which are feature importance 

and correlation matrix. Feature importance shows feature influence on the labeled data while correlation 

matrix gives information about the relation between the independent variables. In this study, feature 

importance can be known using mean score decrease plot which uses the highest level of accuracy model 

as reference. As shown in Figure 20, mean score decrease plot shows that ESP electrical current is the 

most influential parameter for fluid rate while formation layer A, D, E, and F have low impact to the 

target variable so they can be eliminated from the dataset.  

On the other hand, correlation matrix uses normalized pearson plot as shown in Figure 21 to show linear 

relationship between independent variables after being corrected first in order to avoid the outlier such as 

heteroscedasticity. In this plot, it is shown that intake temperature and discharge pressure have strong 

correlation (0.8) to motor and wellhead pressure respectively so eliminating one from each features is 

taken an option to enhance the accuracy of model. Later on, new predictive models are constructed and 

optimized their parameters to see whether their accuracy are increasing or not. Moreover, this study is 

also create several models just based on ESP features, tubing pressure, and casing pressure. Subsequently, 

all predictive models are compared their level of accuracy so the final model which has the highest level 

of accuracy can be selected. 

2.3 Prediction 

After finding out the most appropriate model, the next stage of this study is performing virtual flow rate 

prediction to fill out the missing value of fluid rate from ESP wells in M Field from past three years. 

Then, the values of unknown flow rate when the wells are not being tested are obtained and it measures 

the reliability of model.  
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3 Case Study 

M Field is a mature field located in Sunda Basin, Offshore Southeast Sumatera which has been producing 

since 1982. Nowadays, majority of wells in M Field have equipped themselves with ESP installed in 

range of depth 4000 - 7000 ft and deeper than 7000 ft. Moreover, ESP wells in M Field have relatively 

short ESP run lives in the range of 70 up to 365 days so the additional cost for workover and pump 

replacement for each year are inevitable. 

In this study, input data for virtual flow rate prediction is taken from twelve wells in M Field which are 

MA-04, MA-06, MA-14, MB-07, MB-10, MB-12, MB-13, MB-15, MC-09, MC-10, MC-11, and MC-12. 

The observation is start from 1 January 2017 until 31 January 2020. Within this range of date, RC4000, 

RC1000, DN1750, DN1050, and DN460 are the types of ESP installed which result different ESP 

specifications such as stage, power, and electrical voltage. Next, these wells have been producing in the 

different layers formation such as Formation A, Formation B, Formation C, Formation D, Formation E, 

and Formation F. Then, inner tubing diameters in this field vary between 2.441 in and 2.992 in. 

Furthermore, ESP sensor provides the values of ESP electrical current, intake temperature, motor 

temperature, intake pressure, and discharge pressure. Moreover, wellhead pressure and casing pressure 

are entered into the dataset as they have significant effect to fluid rate.  

4 Result and Discussion 

Six regression algorithms are constructed by using 14,915 data points from 12 mature wells in the 

Offshore Southeast Sumatera field along with conducting parameter tuning and feature engineering in 

order to boost the accuracy of models. As shown in Figure 22, the final result of this study states that 

Support Vector Machine Regressor (SVR) built based on ESP features, tubing pressure, and casing 

pressure appears as the best performance model with the 96.05% level of accuracy and the lowest over-

fitting tendency among other model after being evaluated by 176 data points of historical well test as 

shown in Table 6. Moreover, both penalty parameter (C) value of 1000 and gamma (𝛾) value of 0.1 are 

chosen as the best parameters for this case. 

Afterwards, virtual flow rate prediction is conducted for 12 ESP wells before their accuracy and error 

which are represented by average R-squared of test data and Root Mean Square Error (RMSE) are 

evaluated as shown in the Table 7. MB-13, MB-10, MC-09, and MA-14 are the top four wells with the 

highest performance among the rest of the wells by seeing their average R-squared of test data and 

RMSE. Moreover, those wells have also been validated with great amount of historical well test as shown 

in Figure 23. On the other hand, MC-11, MC-10, MB-15, and MA-06 have good level of accuracy and 

RMSE but they are lack of historical well test data as shown in Figure 24. Furthermore, MA-04, MC-12, 

MB-07, and MB-12 have lower level of accuracy even though they have more historical well test data 

than previously mentioned wells as shown in Figure 25. However, virtual flow rate prediction cannot be 

done if there is still error value in the input dataset as it will yield incorrect output as shown in Figure 26. 

Therefore, cleaning data must be conducted first before the data is used for prediction. 
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5 Conclusion 

In conclusion, SVR model which has penalty parameter (C) value of 1000 and gamma (γ) value of 0.1 has 

been chosen as the best predictive model for estimating virtual flow rate from ESP wells in Offshore 

Southeast Sumatera with 96.05% level of accuracy. This model is obtained after feature engineering 

which eliminates some features and leaves only tubing pressure, casing pressure, and several ESP features 

such as pump type, stage, power, electrical voltage, electrical current, pump intake pressure, and pump 

intake temperature. As supervised machine learning utilizes the pattern of the dataset, it is very important 

to prepare data first since the training dataset gives direct impact to the model’s performance. Afterwards, 

optimizing the parameters of model and cross validation are the next step to do to find out the best model 

parameters. Then, feature engineering can be considered as an option to improve good level of accuracy 

model into the higher accuracy model by eliminating the features which have no significant effect in the 

dataset and high correlation among the independent features.  

Hereafter, this study shows that virtual flow rate prediction can properly be applied in MB-13, MB-10, 

MC-09, and MA-14 since the average R-squared of test data in those wells ranges between 84% - 96% 

and their RMSE ranges between 18 to 45. Moreover, the reliability of virtual flow rate prediction in those 

wells has already been supported by historical well test data. On the other side, MC-11, MC-10, MB-15, 

and MA-06 need more production data to have better validation towards virtual flow rate prediction in 

order to boost the feasibility of model. Meanwhile, fluid rate estimation in MA-04, MC-12, MB-07, and 

MB-12 can be implemented better if the model updates its data first. Furthermore, it is important to 

ensure that there is no error or incorrect value in the input data in order to prevent failure in 

approximating flow rate. 

6 Recommendation 

The predictive model must be continuously updated its data especially when it is unable to estimate the 

virtual flow rate correctly. Moreover, it is also needed to update the model when there is an event such as 

pump replacement, tubing replacement, and other workover activities. Afterwards, it is very suggested to 

apply deep learning in approximating virtual flow rate value for further development of this study. 
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List of Tables  

Table 1. Missing Value Percentage 

Feature Missing Value Missing Value (%) 

Layer A 0 0 

Layer B 0 0 

Layer C 0 0 

Layer D 0 0 

Layer E 0 0 

Layer F 0 0 

ESP Type 0 0 

Stage 0 0 

HP 0 0 

Voltage 0 0 

Tubing ID 0 0 

Average Ampere 0 0 

Intake Temperature 50 6.37 

Motor Temperature 50 6.37 

Intake Pressure 50 6.37 

Discharge Pressure 50 6.37 

Tubing Pressure 2 0.25 

Casing Pressure 2 0.25 

 

Table 2. Coefficient of Multivariate Linear Regression 

Name Coefficient 

Intercept 2173.027 

Stage 1.016 

HP -3.470 

Volt 0.510 

Average Amps (A) 19.362 

Intake Temperature (F) -15.241 

Motor Temperature (F) 3.813 

Intake Pressure (psi) 0.255 

Discharge Pressure (psi) 0.050 

Tubing Pressure (psi) -0.450 

Casing Pressure (psi) 0.019 

 

 

 

Table 3. Grid Search CV Parameters 

KNN SVR RF XGBoost Linear Elastic Net 
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-Number of 

neighbour : 

[3, 9, 17] 

 

-Weight : 

[Uniform, 

Distance] 

 

-Distance : 

[Manhattan, 

Euclidean] 

-Gamma : 

[0.1, 1, 10] 

 

-Penalty 

parameter : 

[0.1, 1, 100, 

1000] 

-Number of tree : 

[100, 200, 400] 

 

-Level of tree : 

[10, 20] 

 

-Max feature : 

[0.1, 0.3] 

-Number of tree : 

[100, 200, 400] 

-Level of tree : 

[5, 10, 20] 

-Column sample : 

[0.2, 0.6, 1] 

-Subsample : 

[0.2, 0.4, 0.8] 

-Learning rate : 

[0.1, 1, 2] 

-Alpha : 

[0.1, 10] 

-Lamda : 

[0.1, 10] 

-Intercept : 

[True, False] 

-Intercept : 

[True, False] 

 

-Alpha : 

[0.1, 1, 10] 

 

-L1 ratio : 

[0.5, 1] 

 

Table 4. Randomized Search CV Parameters 

KNN SVR RF XGBoost Linear Elastic Net 

- Number of 

neighbour : 

(1 – 40) 

 

-Weight : 

[Uniform, 

Distance] 

 

-Distance : 

[Manhattan, 

Euclidean] 

-Gamma : 

(0.001-1000) 

 

-Penalty 

parameter : 

(0.001-1000) 

 

-Number of tree : 

(100 – 200) 

 

-Level of tree : 

(20 - 80) 

 

-Max feature : 

(0.1 – 1) 

 

-Min samples leaf : 

(1 – 20) 

-Number of tree : 

(100 - 200) 

-Level of tree : 

(1 – 10) 

-Column sample : 

(0.1 – 1) 

-Subsample : 

(0.3 – 0.8) 

-Learning rate : 

(0.01 – 1) 

-Alpha : 

(0.001 – 10) 

-Lamda : 

(0.001 – 10) 

-Gamma : 

(1 – 10) 

-Intercept : 

[True, 

False] 

-Intercept : 

[True, 

False] 

 

-Alpha : 

(0.0001– 

100) 

 

-L1 ratio : 

(0 – 1) 

 
 

Table 5. Bayes Search CV Parameters 

KNN SVR RF XGBoost Linear Elastic Net 
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- Number of 

neighbour : 

(1 – 40) 

 

-Weight : 

[Uniform, 

Distance] 

 

-Distance : 

[Manhattan, 

Euclidean] 

-Gamma : 

(0.001-1000) 

 

-Penalty 

parameter : 

(0.001-1000) 

 

-Number of tree : 

(100 – 200) 

 

-Level of tree : 

(20 - 80) 

 

-Max feature : 

(0.1 – 1) 

 

-Min samples leaf : 

(1 – 20) 

-Number of tree : 

(100 - 200) 

-Level of tree : 

(1 – 10) 

-Column sample : 

(0.1 – 1) 

-Subsample : 

(0.3 – 0.8) 

-Learning rate : 

(0.01 – 1) 

-Alpha : 

(0.001 – 10) 

-Lamda : 

(0.001 – 10) 

-Gamma : 

(1 – 10) 

-Intercept : 

[True, 

False] 

-Intercept : 

[True, 

False] 

 

-Alpha : 

(0.0001– 

100) 

 

-L1 ratio : 

(0 – 1) 

 

Table 6. Model Performance Comparison 

Before FE Training R-squared Average Test R-squared Best Optimizer 

KNN 1 0.9323 Bayes Search CV 

SVR 0.9794 0.9465 Grid Search CV 

RF 0.995 0.9464 Bayes Search CV 

XGBoost 0.9991 0.9390 Bayes Search CV 

Linear 0.8930 0.8470 Grid Search CV 

Elastic Net 0.8913 0.8611 Grid Search CV 
 

After FE Training R-squared Average Test R-squared Best Optimizer 

KNN 0.9999 0.9476 Grid Search CV 

SVR 0.9752 0.9586 Grid Search CV 

RF 0.9940 0.9508 Grid Search CV 

XGBoost 0.9929 0.9490 Random Search CV 

Linear 0.8872 0.8543 Grid Search CV 

Elastic Net 0.8820 0.8684 Random Search CV 
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ESP Features, Tubing Pressure, and Casing Pressure Only 

Before FE Training R-squared Average Test R-squared Best Optimizer 

KNN 1 0.9381 Grid Search CV 

SVR 0.9774 0.9468 Grid Search CV 

RF 0.9868 0.9486 Bayes Search CV 

XGBoost 0.9989 0.9401 Bayes Search CV 

Linear 0.8290 0.8408 Grid Search CV 

Elastic Net 0.8284 0.8411 Grid Search CV 

  

ESP Features, Tubing Pressure, and Casing Pressure Only 

After FE Training R-squared Average Test R-squared Best Optimizer 

KNN 0.9999 0.9477 Grid Search CV 

SVR 0.973 0.9605 Grid Search CV 

RF 0.9940 0.9580 Bayes Search CV 

XGBoost 0.9993 0.9432 Bayes Search CV 

Linear 0.8267 0.8373 Grid Search CV 

Elastic Net 0.8261 0.8375 Grid Search CV 

 

Table 7. Prediction Model Performance in ESP wells 

Well Name R-squared RMSE 

MA-04 0.5855 67.99 

MA-06 0.820 27.81 

MA-14 0.8783 34.92 

MB-07 0.5139 62.88 

MB-10 0.8420 43.38 

MB-12 0.2974 89.45 

MB-13 0.8814 32.59 
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MB-15 0.8588 65.60 

MC-09 0.9645 18.17 

MC-10 0.8917 26.29 

MC-11 0.9222 19.42 

MC-12 0.5171 111.37 
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Figure 1. ESP Real-Time Surveillance System.  

 

 

 

 

 

 

 

 

 

 

Figure 2. ESP Wells Virtual Flow Rate Prediction Workflow. 
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Figure 3. Missing Value Plot of Raw Data 

 

 

 

 

 

 

 

Figure 4. Missing Value Plot of Clean Data 

 

 

 

 

 

Figure 5. Variation of Data Distribution 
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Figure 6. Example of KNN Approach (James, G., 2013). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Illustration of line SVR. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Penalty Parameter (C) in SVR (Putra, W.D.K., 2018). 
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Figure 9. Kernel Trick in SVR by Using Gaussian (Putra, W.D.K., 2018). 

 
 

Figure 10. Kernel Coefficient (γ) in SVR (Putra, W.D.K., 2018). 

 

 
Figure 11. Random Forest Illustration (Dutta., A, 2020). 

Before After Kernel Trick 
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Figure 12. Maximum Depth Comparison (Putra, W.D.K., 2018). 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Example of Linear Regression Plot (James, G., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Illustration of Elastic Net (Hastie, T., 2004). 
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Figure 15. Example of Grid Search CV. 

  

 

 

 

 

 

 

 

 

 

        Figure 16. Example of Randomized Search CV.                    Figure 17. Example of Bayes Search CV. 

 

 

 

 

 

 

 

Figure 18. The illustration of K-Fold Cross Validation. 
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Figure 19. K-Fold Cross Validation in Grid Search CV, Random Search CV, and Bayes Search CV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Feature Importance - Mean Score Decrease Plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 21. Normalized Pearson Plot 
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Figure 22. Average R-squared Between Model. 

 

 
Figure 23. Virtual Flow Rate Prediction in MB - 13, MB - 10, MC - 09, and MA – 14. 
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Figure 24. Virtual Flow Rate Prediction in MC - 11, MC - 10, MB - 15, and MA – 06. 

 
 

 
Figure 25. Virtual Flow Rate Prediction in MA - 04, MC - 12, MB - 07, and MB – 12. 
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Figure 26. Failed to Predict Virtual Flow Rate due to error value in ESP sensor data 

 


