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Abstract. Production optimization on a network level has been proven to be an effective method to 

maximize production potential of a field with low capital. But as it stands, it is a heavy process to start 

along with its several challenges such as data quality issues, tedious plus repetitive work processes to 

deploy and re-use a complete network model. Leveraging technologies from PIPESIM flow assurance 

simulator, python API toolkit, open-source machine learning packages in python, and a commercial 

visualization dashboard, this paper proposed a series of workflows to simplify model deployment and set 

up an automatic advisory system to provide insight as a mean to justify an engineer’s day to-day 

engineering decision. 

A total of three steps was prepared to achieve field-level automated optimization system. First, is the 

creation of digital twin of well and network model. To eliminate potential data errors, reduce time 

consumed, and to merge various part of the model into one, a scalable python script was made. Second, 

an automated calibration workflow is created as performance issues also arises for individual branch 

calibration matching. Hence a combination of technologies was utilized to automate daily data acquisition 

and model update from production database and run a supervised machine learning model to continuously 

calibrate the network model. The last one is creating the customizable optimization workflow based of 

field KPIs, which results are derived from daily optimization run. The results are available in a 

personalized network surveillance dashboard accessible for engineers to create rapid decisions. 

From the first and second steps, time consumed was reduced from 30 minutes/well to 10 minutes/well in 

bulk well modelling workflow and from 2 hours to 10 minutes for the network model merge with the 

assumption of 100 wells in one network. It would also greatly increase data integrity and consistency 

issues as it eliminates wearisome input process. On the last step, the model was successfully updated with 

the latest production data and the well IPRs’ Liquid PI, reservoir pressure, and holdup factor are predicted 

from ML with more than 90% accuracy. As result delivery, the surveillance dashboard will be populated 

daily with the network production data, flowing parameters, and operation recommendations. It is 

estimated more than 90% time is saved from manual individual runs to digital comprehensive 

optimization. 
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1 Introduction 

1.1 Background 

Production optimization is a propitious work despite the severity of the process. Furthermore, to get a 

detailed understanding of the production system thermohydraulic, facility design, and the amount of 

changes one could make to have a major effect on  production target, the modeling is required to be done 

in a network level  to properly account for the interdependency of wells and surface equipment and 

determine the system deliverability as a whole by optimizing operational parameters (Hammadi, et al., 

2020).  

In an optimization case, aside from having the maximum oil production rate as large as possible, the need 

to ensure that engineer uses his/her resources (e.g. Gas in gas lift injections, electrical power in ESP-

equipped wells) does exist. In response to this requirement; a multiphase flow simulator for wells and 

pipelines (PIPESIM) which includes an accurate numerical representation of an asset’s potential 

performance was used to present the automated optimization workflows in this paper. 

 

Figure 1 - Main steps of deploying a network optimization model 

Summarized from Hammadi, et al. (2020) as shown in Figure 1, there are four steps that are needed to be 

taken in order to have a valid network model which can accurately describe the production system fluid 

flow behavior and suitable to support in day to day decision making for operations and optimizations 

purposes:  

1. Well Model Building and Matching: starting with data gathering and review, this is a step 

where individual well models were built and calibrated to current conditions by data matching. 
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With the help of a Well Test and a Flowing Gradient Survey (FGS) data, a pressure-matching 

process can be undertaken to obtain the most acceptable flow correlation and correction factors 

(Friction and Holdup Factors). Should one have temperature points or profile available, one can 

match the values to get a sensible U value (heat transfer coefficient). Lastly, if there are any 

uncertainties present in the inflow part of our system, we can adjust our IPR parameters to match 

the operating condition (in this case, Liquid PI as the study used Well PI as its IPR model). 

2. Well Basis GL Evaluation: in addition to wells calibration, two operations (Gas lift response 

evaluation and Gas lift diagnostics) have been created for each of the wells to show how the 

production rate and possible gas injection depth vary as a function of injection rate and the 

sensitivity parameter, and to get insight on how the gas lift system setup (gas lift valves) operate 

(is there any multi-pointing case?) in the well. 

3. Network Modelling: the network construction starts by importing all matched well models, then 

add network flowlines and equipment along with each component’s setting (if flowlines’ pressure 

and temperature data are available, data matching can be conducted at this stage) and finally 

update the network model with the most updated well test data to ensure the model is calibrated 

and suitable for the main goal which is the Production Optimization. 

4. Gas Lift Optimization Scenarios: to perform the optimization with maximizing oil production 

rate as the objective function, the following steps are required: 

a. Base Case creation: necessary step to establish a base line (current operational 

conditions). 

b. Global and Local constraints definition: to supply constraints into the optimization 

scenario, well constraints, branches and nodes in the network were specified. 

c. Flow performance curves generation: included in the PIPESIM optimization run, gas lift 

performance curves are generated for each well which will be the basis for optimizing the 

wells on a network scale. 

Based on the elaborated topics above, in order to build a robust optimization workflow, heavy and time-

consuming processes from well modeling up to running the optimization itself are essential to be done, 

especially when the network size is scaled up to large number of wells (>100 wells). To add, when a 

production optimization run has attained a result, the best way to amplify the value that one can get from 

the workflow is to not stop there, the workflow should be continuous and recommend operating 

parameters on the basis of the everchanging wells and network operating conditions (e.g. separator 

pressure, Gas-Oil-Ratio (GOR), Water-Cut (WC), gas lift injection rate, well productivity (liquid PI), 

reservoir pressure).  

However, to reach the last evergreen solution, the detailed workflow’s deployment has some underlying 

challenges: 

1. Ensuring data integrity and consistency throughout stages of the workflow: A lot of manual 

inputs need to be done from earlier well model building stage to daily update of field data to 

calibrate the model. Data input error or inconsistences even in a value’s decimal length can be 

rolled-up and have significant impact that is hard to trace in a bigger scale. 

2. Time-consuming and repetitive actions: To build the full-scale optimization manually, take an 

example a to build a well model, an engineer will have to deal with the simulator’s different user 



     

 
“Kebijakan, Strategi dan Teknologi Tepat Guna untuk Meningkatkan 

Pengurasan Lapangan Minyak dan Gas di Indonesia“ 

 

PROFESSIONAL TECHNICAL PAPER 

 

interfaces to input the data (15-30 minutes) and do the exact same process for amount of wells 

times. Not to mention the network daily field data update to both the wells’ and network’s 

components.  

3. Resources constraints: A team of production and reservoir engineers do have time and resource 

limitation as there are other high-valued works to be done.  

1.2 Objective 

The objectives of this automated intelligent production network optimization workflows creation are: 

1. To minimizes risk for data quality issues from human errors 

2. To speed-up pre and post deployment of a continuous production network optimization workflow 

hence saving time and resources 

3. To extend the solutions to complete a digital oilfield workflow: 

a. Add a production surveillance dashboard 

b. Extract publicly open temperature data from a weather service API 

c. Add a Machine Learning (ML) Auto-calibration workflow 

1.3 Methodology 

The author has created four comprehensive workflows that automates some parts of the production 

network optimization workflow in order to complete the objectives listed above. Using some technologies 

such as multiphase flow simulator, the simulator’s API, Microsoft Excel, data visualization tools, 

relational database, and Python open-source packages (pandas, numpy, matplotlib, seaborn, pyodbc, and 

scikit-learn) which are discussed in the next section. 

For this case study purposes, the multiphase flow simulator used is PIPESIM along with its Python toolkit 

API for its simplicity and robust libraries availability for integration. For relational database, SQL Server 

is chosen, and for visualization tools, Power BI is picked. For the last two the options are not limited to 

the selected within this case study and can be adjusted of what’s already been implemented on the field. 

The workflows that were built to achieve automated production network optimization:  

1.3.1 Workflow 1 - Bulk Well Modeling 

In order to simplify step number one in the production network optimization workflow, the workflow that 

provide engineers to put inputs for well model (e.g. well general, casing/ liner/ tubing, artificial lifts, 

downhole equipment, completions, and fluids properties) into an Excel sheet to avoid potential data errors 

and time consumed in building large number of well models using Graphical User Interface (GUI). After 

the data has been inputted to the Excel sheet, a python script embedded to the Excel file that reads all the 

input according to the variable it will be put into for all the wells will be run and individual well models 

inside a designated well model will be created accordingly within minutes of work. 
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Figure 2 - Bulk Well Modeling Workflow 

1.3.2 Workflow 2 – Automatic Network Merge 

In a big network optimization model construction, the subsurface team handles the well models’ creation 

and matching while the surface team responsible for the network part. This workflow is established to 

enable both departments works to integrate in a large scale (many chunks of production network and large 

number of wells) into one network model so that all matched results from previous processes can be 

brought over. Where a simple copy paste might have failed, a python script is created to ensure that the 

mechanism is working 

 
Figure 3 - Automatic Network Merge Workflow 

1.3.3 Workflow 3 – Daily Data Automatic Feeding 

As elaborated before, to gain more value from the production network optimization workflow and 

prepared Network Model, the deployment of the workflow should be continuous, and it should 

recommend new optimization scenario or give insights about current operating condition as the field 

operating condition changes. Engineers have data continuously stream into their production database, thus 

a system that will be able to extract the latest data which have different frequencies (e.g. well test data is 

sporadic, while field equipment data is daily) into the prepared network model should exists to ensure the 

validity of the model. The goal is to have a digital twin of the real production system in the field. 
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Figure 4 - Daily Data Automatic Feeding 

This automatic update may seem simple but in a large network model which consists of hundreds of 

wells, done daily and manually, the task can be a time-consuming and tedious process which leads to 

high-risk of poor data quality. Thus, a python script has been prepared to obtain data from the Production 

Database Management System (PDMS) and the web service, to push and finally calibrate the model with 

the latest: 

1. Well test data (e.g. water cut, gas oil ratio) 

2. Field equipment data (e.g. gas lift injection rates, separator pressures) 

3. Ambient temperature data from a weather service 

1.3.3.1 Machine Learning Auto-calibration Workflow 

As a part of workflow number three, the ML Auto-calibration workflow exist to predict some unknown 

parameters that will change as the production lifecycle of a well goes-on such as the well’s completion’s 

Productivity Index (PI) and reservoir pressure (Figure 5). Through training and tuning, supervised 

machine learning models to predict the earlier parameters, as well as the well’s flow correlation’s holdup-

factor and friction-factor were made. The two latter constants (Figure 6) can be used to give weight to 

frictional and hydrostatic pressure-drop calculations of the well and hence tune the calculation. The list of 

assumptions to this workflow is as follow: 

1. Wellbore models were assumed to rely on the datum depth of reservoir pressure. This would 

ensure that the flowing bottom-hole pressure and the reservoir pressure were referring to the same 

depth; hence there wouldn’t be mismatch due to hydrostatic head 

2. Every flow correlation set in each well is the most suitable to the well’s flowing condition (Flow 

correlation ML prediction model was not created in this study) 
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3. The well models were configured to use the Well PI as their IPR Model. For those wells that 

cross the bubble point pressure region the option to use Vogel equation was applied 

 

 

Figure 5 - Physical Well Model - Reservoir Properties and Parameters to be predicted 

 
Figure 6 - Simulation Settings and Parameters to be predicted 

The following processes to get the ready to-be-deployed model were used (Figure 7): 

 

Figure 7 - ML Auto-calibration Workflow 
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 Step 1 - Generate dataset for each well: With the physical model and chosen flow correlation in 

place, nodal simulations were run to get the combinations of variations these values for each well

o Wellhead Pressure 

o Gas Lift Rate 

o Water Cut 

o Reservoir Pressure 

o Holdup-Factor 

o Friction-Factor 

  The parameter chosen to be sensitized is subject to the well, reservoir, and fluid type (e.g. a gas 

well that has no connate water or aquifer shouldn’t mind sensitizing the water cut parameter) And 

the values used for each parameter were based on the current value of each parameter. The 

maximum and minimum values for each parameter should be enough to cover the possibilities of 

the parameter value to change in the field. 

 Step 2 – Train and tune four regression models to get the best model to predict the four 

parameters: In this process, there are several important steps to note, 

o Data preparation to be supplied to the machine learning model. The default features to be 

supplied to the machine learning model are the ones extracted from the latest well test 

data and field equipment data. 

o Selection the best supervised ML algorithm to be used. In this case, these following 

algorithms were tested: 

 K-Nearest Neighbour (KNN) 

 Support Vector Regression (SVR) 

 Random Forest Regression (RFR) 

 Extreme Gradient Boosting (XGBoost) 

 Linear Regression 

 Elastic Net Regression 

o Tuning of the selected algorithm’s hyperparameter using Randomized Search CV. 

o Cross-validation of training data using Randomized Search CV. 

o Feature engineering (feature reduction) process to further improve the model 

performance by reducing parameter which consists of these following steps: 

 Feature importance using mean score decrease method. 

 Feature-feature and feature-target correlation using normalized pearson plot. 

 Feature scaling should the algorithm is sensitive to unscaled features (e.g. KNN, 

SVR) 

 Step 3 – Try for prediction arrangements. The predicted parameters (Liquid PI, Reservoir 

Pressure, Friction-factor, and Holdup-factor) could be correlated to one another. It would be 

possible if one parameter is best to be predicted after the prediction of the other 

At last, along with the latest field data extracted from the database and weather service, the ML model’s 

prediction results will be populated to the prepared PIPESIM model daily. 

1.3.4 Workflow 4 – Smart Advisory System 

This workflow serves to provide solution to the dynamic operation condition. Should workflow number 

three has already been deployed, one will have calibrated and ready to-be-used network model every day. 

Thus, to get an in-depth network analysis and operation recommendation with the deployed model 
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pertaining to the current condition, an automatic daily advisory system can be built by running both 

PIPESIM’s Network Simulation and Network Optimization tasks. 

From Network Simulation task, PIPESIM will output Pressure and Temperature profiles along the 

network, as well as other flowing parameters such as Maximum Erosional Velocity Ratio (EVR) and 

Maximum Liquid Loading Velocity Ratio (LLVR). These important derived flowing parameters are used 

to monitor erosion and liquid loading risks, and it can only be obtained by running such simulation thus it 

gives added value to the surveillance framework. On the other hand, the Network Optimizer gives out the 

recommendation on how to get maximum oil or maximum gas by varying set control variables (e.g. gas 

lift rates) within set constraints. Hence, for example, one will get the recommended gas lift rates or ESP 

frequency to get the maximum oil rate from its oil production network based on stated constraint (such as 

surface facility capacity limitation).  

A Python script powered by PIPESIM Python Toolkit API acts as the integrator of this workflow. It runs 

the above tasks daily (triggered from the Task Scheduler) and send the results to the company’s PDMS 

which from there, a prepared PowerBI dashboard will pull and gather the data along with the latest well 

test, field equipment and back-allocation data to ease the engineer to have an all-in-one canvas as the 

basis of daily engineering justifications 

 

Figure 8 - Smart Advisory System Workflow 

2 Basic Theory 

2.1 Multiphase Steady-state Flow Simulator 

PIPESIM is used to simulate multiphase flow simulation throughout the production system from the 

reservoir through to the surface facilities to enable comprehensive production (and injection) system 

analysis. Steady state means that the mass flow rate is conserved throughout the system, no accumulation 

of mass in any component of the system. This simulator is used starting from design to the optimization 

period of  oil, gas and water production and injection system. It is most often used by reservoir, 

production, and facilities engineer to model well performance, design artificial lift systems, model 

pipeline networks and facilities, analyze field development plans, and optimize production.  
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Figure 9 - Example of a Network Model with a GIS Map 

2.1.1 Network Simulation 

Network modeling is needed should one needs to take account the interaction of the different components 

(such as compressors, separators, and wells) producing into common gathering systems. As the wellhead 

pressure and, by extension, the deliverability of any well is influenced by the back pressure imposed by 

the production system. It also allows the engineers to determine the effects of changes such as adding new 

wells, adding compression, looping flowlines, and changing separation system. 

To be able to analyze the whole components in a network, the network should be solved based on the 

boundary conditions (Pressure/ Flow rate/ PQ curve) set on each component. The network will be 

converged when the pressure balance and mass balance at each node are within the specified tolerance. 

Then it will output parameters along the flow path (profile) and at each node in the network. In the 

Network Simulation input pane (Figure 10), one can also override the phase ratios (e.g. WC, GOR) set to 

each well. 

 

Figure 10 - PIPESIM Network Simulation input 

2.1.1.1 Simulation Settings 

Before running the Network Simulation, it is a common practice to set the Network tolerance inside the 

simulation settings. Another important input to be set in the simulation settings is to choose flow 

correlations (Figure 11). Flow correlations to be chosen in PIPESIM are divided into three categories: 

 Vertical multiphase correlation 
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 Horizontal multiphase correlation 

 Single phase correlation 

Each of these correlations can be set for global (all wells and flowlines will use the same correlations), or 

locally like the one showed in Figure 11.  

 

Figure 10 - Flow Correlation Selection  

To help match the flow correlation calculation to the field data, engineers put some calibration factors to 

the friction factors and holdup factors: 

 Friction factors: adjust the frictional pressure drop linearly. For example, if the friction factor is 

set to 0.5, the friction element of pressure drops computed by the correlation is halved. 

(Schlumberger, 2019) 

 Holdup factors: adjust the liquid holdup from the value predicted by the correlation with a non-

linear relationship: 

         (    )   
  … (1) 

In the equation above,     is the value predicted by the correlation and    is the holdup factor. 

2.1.2 Network Optimizer 

Network Optimizer adjust the control variables set (gas lift rates/ ESP/ PCP speeds/ choke bean size) in 

order to minimize/ maximize the value of a tailored objective function (e.g. maximize oil produced/ 

minimized water produced). Applied constraints, local and/or global, will be honored during the 

optimization. For local constraints, there were many options to limit the maximum liquid rate, water rate, 

and gas rate in each well or in one group, as well as the amount of the injected gas into the wells. Table 1 

shows the list of local and global constraints that can be defined in the model. All input to the optimizer is 

combined in one single task 
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Table 1 - PIPESIM Network Optimizer Local and Global Constraints 

 
 

The task works by running well performance curves at first, before finding the optimum value to satisfy 

the objective function. The optimization algorithm is developed by Schlumberger Doll Research 

(Cambridge, MA) and it is based on Basic Open-source Mixed Integer (BONMIN) framework which 

applied on Mixed Integer Non-Linear Programs (MINLP) solvers. 

 
Figure 11 - Example of PIPESIM Network Optimizer Result 

2.1.3 PIPESIM Python Toolkit 

PIPESIM Python Toolkit is a Software Development Kit (SDK) for working with PIPESIM using Python 

programming language, in the form of Python module named Sixgill which designed to perform actions 

with a similar user perspective to the PIPESIM GUI. It runs independently from the PIPESIM GUI by 

creating a session (started when it opens a PIPESIM model from Python program). A session can be 

considered as an input/ output (I/ O) communications channel with a PIPESIM model. User can query the 

model for its contents and parameters; add, delete and modify the model components; and perform tasks 

on the model (e.g. Nodal Analysis, Network Optimizer, etc.). 
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Figure 12 - PIPESIM Python Toolkit Infrastructure (Schlumberger, 2019) 

Other than the Sixgill package, the installation of PIPESIM Python Toolkit also comes with PyXLL and 

xlwings packages which help users to interface PIPESIM from Microsoft Excel as PyXLL brings its 

PIPESIM Python Toolkit Excel plugin to user’s Excel application. Another common package that is 

included is pandas, which is useful for working with data sets and arrays. As the tool uses Python as its 

main driver, users can also integrate its PIPESIM model with other open-source libraries to extend and 

boost the values of their workflows. In this study for example, other packages used to enhance the 

workflows are pyodbc to connect with databases, scikit-learn for machine learning workflows, and jcopml 

to ease the creation of machine learning models. 

 
Figure 13 - Interfacing PIPESIM from Excel with PIPESIM Python Toolkit 

2.2 Supervised Machine Learning  

In this study, the method that the author used is called Supervised Machine Learning. From James, 

Witten, Hastie, & Tibshirani, (2013), there are a set of inputs X that are readily available, and the 

Machine Learning model will try to predict the Y by using: 
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 ̂   ̂( ) … (2) 

Where  ̂ represents our estimate for the real f, and  ̂ represents the resulting prediction for  .  ̂ is often 

treated like a black box, in the sense that one is not typically concerned with the exact form of   ̂, if it 

yields accurate predictions for  . When an algorithm is ‘fitted’ to a training data, it constructs the   ̂ by 

reducing the error function written as: 

 (   ̂)     | ( )        ̂( )|
 

 

                       | ( )    ̂( )|
 
    ( )  

 

… (3) 

Where  (   ̂) represents the average, or expected value, of the squared difference between the 

predicted and actual value of  , and    ( ) represents the variance associated with the error term   

which becomes the irreducible part of the term. 

2.2.1 Data Preparation 

In order to be able to fit the data to get the best value of  ̂ that as close as possible to  , a set of training 

data (X and Y) should be provided to train the model and at the same time, a set of test data (X and Y) 

ready to evaluate the and score the model should also be available. Both sets need some preparation, for 

example the ML package that we are using cannot directly read string values from a categorical column, 

hence all categorical column should be encoded, the most common method is to use one-hot encoding. 

Thus, to make the process seamless, pipelines were used. After dataset splitting, numerical column will be 

collected by numerical pipeline to undergo some numerical preprocessing (e.g. data impute, scaling, 

transformation, polynomial features generation) and at the same time, categorical columns will be 

gathered by the categorical pipeline to apply the preprocessing for categorical values (e.g. data impute, 

encoding). 

 
Figure 14 - Preprocessing Pipeline Schematic 

2.2.2 Regression Algorithm 

In this study, six regression algorithms mentioned in the methodology section were tested. There was 

parametric algorithm (reduces the problem of estimating   down to one of estimating a set of parameters) 

such as Linear Regression and Elastic Net Regression, and non-parametric method like K-Nearest 

Neighbors, Support Vector Regression, Random Forest Regression and Extreme Gradient Boosting 
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(XGBoost). All algorithm will be trained and solved to reduce the error function, which in this case, is the 

  : 

     
∑(     ̂)

 

∑(    ̅)
  

… (4) 

which will be negative should our prediction is worse than just taking the average value. In this study, 

only two algorithms were finally selected to be use, KNN and RFR, hence only those two algorithms will 

be discussed in this paper. 

2.2.2.1 K-Nearest Neighbor (KNN) 

KNN algorithm takes the value of the nearest N neighbors to be considered for the predicted value. 

Besides the number of the neighbors, KNN also has the option to put distance-based weighting to these 

nearest N neighbors. Finally, the algorithm allows user to select the distance calculation method (e.g. 

Euclidean, Manhattan, and Chebyshev) to be used should one opt in for the distance-based weighting. 

 
Figure 15 - Illustration of KNN Algorithm (James, Witten, Hastie, & Tibshirani, 2013) 

2.2.2.2 Random Forest Regressor (RFR) 

RFR model was created by applying bootstrap and aggregation to decision tree method. Decision tree is a 

ML algorithm which model built upon a lot of decisions towards its feature. In Figure 16, a decision tree 

with 2-level depths which is applied to a univariate data. When one fit a decision tree to a training data, 

the algorithm will determine where the decisions will be put in order to produce the lowest error. 
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Figure 16 – Illustration of Decision Tree Algorithm (Putra, LuWiji, 2019) 

In a hyperparameter tuning case however, when one tunes the tree depth and make it unconstrained, it can 

reach a level where the number of samples in each of the decision tree becomes only one sample. This 

case ill has a very high accuracy but overfitting tendency. Then the idea of bootstrap and bagging comes 

to play. From 100 rows of available in the training data set, several number of trees will be created with 

60% of those 100 rows of data by random sampling with replacement (bootstrapping). Next, after each of 

the decision tree is fitted to their respective data, the result will be aggregated to form a random forest 

model. Thus, this shows that random forest is the further development of decision tree which overcomes 

the over-fitting problem by performing bootstrap and aggregation, or commonly known as bagging. 

 
Figure 17 – Illustration of Random Forest Algorithm (Putra, LuWiji, 2019) 

2.2.3 Hyperparameter Tuning and Cross Validation 

All the machine learning algorithms have some hyperparameter to be tuned to obtain the best parameter to 

be used for our data. For example, in KNN, the number of N nearest neighbor, whether to use the 

distance-based weighting or not, and the distance calculation to be used needs to be determined. 

Meanwhile when one train and validate some training data, there could be some luck factor pertaining to 

the automatically selected validation set. Hence one can use K-Fold Cross Validation method which 

conducts the training and validating process K-number of times by taking the validation set in turns from 

the training data available. To accommodate all these steps, Randomized Search CV (RandomSearchCV) 

was used. It tries several hyperparameter combinations within specified ranges of each hyperparameter, 
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and for each combination run, it conducts a K-Fold Cross Validation K-number of times to get the 

representative validation score for that certain combination. The best combination then selected from the 

one that has the best validation score. An illustration of Randomized Search CV with an SVR algorithm 

can be seen in Figure 18.  

 

Figure 18 – Illustration of Randomized Search CV (Irfan, Vidrianto, Rahmawati, & Naufal, 2020) 

2.2.4 Feature Engineering 

Feature engineering is a step where one can do to improve his/her model by eliminating/ generating the 

number of features fed to the model.  

2.2.4.1 Feature Importance 

Feature importance is a method to filter the features so that only the ones that have large influence on the 

model that will be used for training the model. One of the tools to show feature importance used in this 

study is the mean score decrease plot. This plot shows the scoring reduction should a feature’s column 

gets shuffled. The more the score reduction, the more important the feature. For example, in Figure 19, 

only 4 features have influence on the model’s prediction result. Hence, should one be not looking to 

another analysis, he/she can retrain the model using these four features.  
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Figure 19 - Mean Score Decrease Plot (Putra, J.COp ML, 2018) 

2.2.4.2 Correlation Matrix 

This study also uses a normalized pearson plot as a tool to see feature-feature and feature-target linear 

relationships. The higher the correlation a feature has in the feature-target matrix, the more influence the 

feature is to the result. On the other hand, should two features have a high feature-feature relationship, 

one feature can be dropped. This analysis should be combined with the feature importance analysis to 

select features to be fed. 

 

Figure 20 - Correlation Matrix Plot (Putra, J.COp ML, 2018) 

2.2.4.3 Feature Scaling and Transformation 

In some cases, the numerical features that fed to the model needs to be scaled, below are the advantages 

of feature scaling in some algorithms: 
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 Distance will be more balance (for algorithms that honour distance such as KNN/ SVR) 

 Help machine learning solver, gradient descent, to get better solution due to scaled loss plane  

 In linear regression algorithms, the variable coefficients would be more balance 

There are three types of feature scaling methods: 

1. Standard Scaler: the data is positioned to have its centroid (e.g. mean) to zero and scaled the data 

to have a standard deviation of 1. 

 

Figure 21 - Illustration of Standard Scaler (Putra, Supervised Learning by J.COp, 2018) 

The standard scaler has a weakness as it can only handle normal distributed data, not skewed. 

Hence one can transform the features first using Box-Cox/ Yeo-Johnson transformation before 

scaling using standard scaler. 

 

Figure 22 - Illustration of Data Transformation (Putra, Supervised Learning by J.COp, 2018) 

2. MinMax Scaler: This method shifts the minimum to zero and stretch the data to a scale that is 

desired. The weakness of this scaler is that if the data has outliers, then all the data will get 

compressed. 
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Figure 23 - Illustration of MinMax Scaler (Putra, Supervised Learning by J.COp, 2018) 

3. Robust Scaler: It is the same as MinMax, but instead of scaling with the minimum and maximum 

value, it scales with its quartiles thus avoid the compression due to outliers weakness. 

 
 

Figure 24 - Illustration of Robust Scaler (Putra, Supervised Learning by J.COp, 2018) 

3 Case Study 

3.1 Bulk Well Modeling 

To implement the first workflow and measure the time taken to run the script and construct the well 

model inside a simulation file, 30 well data has been put into the created Excel format (Figure 25). The 

script then run and the time taken is recorded. It takes approximately 90” to complete the workflow with 

30 wells which yields 3” for each well to be created inside a Network Model. Aside from the workflow 

time to be reduced, this workflow also lowers the risk of data input error and thus ensure data integrity 

and consistency because there is no data input to the GUI at all. The workflow is in an Excel format so 

that it is reproducible with another data and scalable to larger number of wells. 
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Figure 25 - Bulk Well Modeling Demo 

3.2 Automatic Network Merge 

To test the tool built for the workflow, the author prepared three different simulation models which 

contains different components. From Figure 26, 2 wells from Wells_GS_1 model supposed to replace 

sources attached to junction N1 and N2 from Network_GS_1 model. Then, the combined network should 

connect to another part of the full network system from Network_GS_2 file. In the real-world situation, it 

is possible to encounter this kind of challenge as the well models were calibrated by the subsurface team 

and the network model was done by the surface team. With the prepared Python script, different chunks 

of the model can be carried over into one single simulation model bringing the simulation settings and 

fluid model along. This ensure data integrity and consistency, as user doesn’t have to do manual 

rebuilding of the network as well as fasten the process. The workflow is also scalable to many more 

simulation model, either it is single branch model or network model, to be combined at once 

 
Figure 26 - Automatic Network Merge Demo 

 

3.3 Daily Data Automatic Feeding and Smart Advisory System 
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For this workflow testing purposes, the author used a dummy field which has four gas-lifted wells 

(Well_1, Well_2, Well_3 and Well_4) with one sink at a Crude Processing Facility (CPF). The wells are 

oil wells with GOR ranges from 200 SCF/STB - 400 SCF/STB and WC vary around 20% – 65%. All 

wells have one Gas Lift mandrel, perforated at one interval below the End of Tubing (EOT) and 

completed with a production tubing.  

 
Figure 27 - Dummy PIPESIM Network Model 

As the workflow has been discussed, the prepared workflow will take the latest well test and field 

equipment data prepared plus an ambient temperature data retrieved from a public weather service and 

store them in an on-premise SQL Server database (Figure 28). The workflow also runs series of 

parameters prediction (Liquid PI, Reservoir Pressure, and Holdup Factor) using trained ML model which 

creation discussed in the next sub-section in this paper. Then all data will be fed into the Dummy 

Network Model to have a ready-to-use calibrated simulation model. 
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Figure 28 - Last Well Test Data 

The goal for the workflow is, as mentioned, to automate the run of Network Simulation and Network 

Optimizer task. For the Network Optimizer, the objective function is set to Maximize Oil Rate, with Gas 

lift rate as a control variable, and Maximum injection gas rate is limited at 3 MMscf/D (Figure 29). These 

two tasks run daily, and the results are stored to prepared table inside the same SQL Server Database, 

which can be visualized through a PowerBI dashboard. 

 

Figure 29 - Illustration of Network Optimization's Optimization Control 

Figure 30 is a production surveillance dashboard made to complete the study. This dashboard will be 

refreshed daily as the automatic feeding and simulation tasks also triggered to run every day. From this 

dashboard, one can get insight on how the field perform from the production profiles along with the 

current gas lift injection allocations monitoring. The network simulation result can also be fond in the 

middle-right of the page, where one can see the branch’s flowing parameter (pressure drop along the 

branch, temperature change, max EVR and max LLVR) as well as the temperature profile along the 

branch. In the bottom of the page is the operation recommendation coming from previous network 

optimizer run. The table recommends the gas lift injection to be increased in Well_1 (from 0.445 

MMscf/D to 0.56 MMscf/D) and Well_4 (from 0.67 MMscf/D to 1.00 MMscf/D) then to be decreased in 

Well_2 (from 0.975 MMscf/D to 0.88 MMscf/D) and Well_3 (from 0.75 MMscf/D to 0.56 MMscf/D). 

With the recommended parameters, the simulation predicts the oil rate to increase to 1,349.24 STB/d 

(10.92% change).  
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Figure 30 - Smart Advisory System PowerBI Dashboard 

By having these 2 workflows in place, engineers can get insight that helps to monitor field and wells 

performance based on flow parameters that one could not get without running the simulation. It also acts 

as an advisory system to increase production and prevent or reduce downtime in a production network. 

Furthermore, due to the automatic nature of this workflow, time is saved, data integrity and consistency 

are preserved due to the elimination of well test and field data manual input. Lastly, new insights are 

automatically delivered to the production surveillance dashboard every day without any fingertips. 

3.3.1 Machine Learning Model Construction 

Machine learning models to predict the four parameters were trained and deployed. After many steps 

taken which discussed in the next sub-section, 3 ML models were prepared. ML model to predict Liquid 

PI used RFR with some feature engineering (Test score: 0.9985), while ML model to predict Holdup 

Factor used KNN with some feature engineering (Test score: 0.9993). Reservoir Pressure’s ML model 

built using RFR, some feature engineering and Liquid PI (Test score: 0.9999) (it is best to predict 

Reservoir Pressure after Liquid PI prediction). Lastly, the author decided to drop the friction-factor 

prediction due to low test scores. The analysis on this is available in the next sub-sections. 

 

Figure 31 - ML Prediction Workflow 
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3.3.1.1 Dataset Generation 

Nodal simulations are run with these combinations in each well (Table 2) which yielded 28125 rows for 

every well. The simulation was run with a prepared PIPESIM Python Toolkit script, and a filter was also 

scripted to filter-out un-converged simulation results. In total, 80003 rows of data were generated with a 

distribution for each well listed in Figure 32. 

 
Figure 32 - Dataset Distribution by Well 

Table 2 - Dataset Generation Sensitivities 

 

3.3.1.2 Liquid PI 

The first step in predicting the parameters is to run AutoML from Putra, J.COp ML (2018) to obtain the 

best algorithm to be used to predict the parameter as well as to get the baseline model. In Figure 32, the 

best algorithm to predict Liquid PI is RFR with 0.9974 test score.  
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Figure 33 - Liquid PI AutoML 

Then after running RFR with a more comprehensive Randomized Search, the result is better with an 

improved 0.9975 test score. With the model on this stage, analysis plots to do some feature engineering 

was drawn. From the mean score decrease plot in Figure 33, and normalized pearson correlation plot in 

Figure 34, the best model from feature engineering was obtained with a test score of 0.9985 and 5 

number of features (Well. Liquid Rate, Water-cut, Gas Lift Injection Rate, Bottom-hole Pressure) 

 
Figure 34 - Liquid PI Mean Score Decrease 
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Figure 35 - Liquid PI Normalized Pearson Correlation Plot 

Among all parameters, Liquid PI has the second-highest individual test score after Holdup Factor. Due to 

there might be a slight correlation between the two as seen from Figure 35, the author tried to train and 

test the model with the addition of Holdup Factor. All results are summarized in Table 3, with the best 

result is the one after the features are reduced and not adding the Holdup Factor feature. 

 
Figure 36 - Predicted Parameters Normalized Pearson Correlation Plot 
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Table 3 - Liquid PI ML Result Summary 

 
 

 
Figure 37 - Liquid PI Actual vs Prediction Plot 

3.3.1.3 Holdup Factor 

The same steps were applied to predict Holdup Factor. For the individual prediction, Holdup Factor has 

the best test score among all predicted parameters with 0.9993. The algorithm selected is KNN, as for the 

feature engineering, both feature reduction and feature scaling were tried because KNN is sensitive to 

scaling. However, as can be seen from Table 4, feature scaling in this case didn’t improve the model, but 

feature reduction did. Hence the feature selected was reduced to Liquid Rate, Oil Rate, Gas Lift Injection 

Rate, Wellhead Pressure, and Bottom-hole Pressure to obtain the best model. 

Number Order Features Algo Preprocessor Optimizer train_R2 cv_R2 test_R2 Model Info

1 1st Well, Qo, Ql, WC, Qinj, WHP, BHP AutoML - RandomForestRegressor 0.999561052 0.996927017 0.997441842 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

2 1st Well, Qo, Ql, WC, Qinj, WHP, BHP RandomForestRegressor RandomSearchCV 0.999661256 0.996948785 0.99747341 max_depth: 48

max_features: 

0.8219772826786358

min_samples_leaf: 1

n_estimators: 188

3 1st Well, Ql, WC, Qinj, BHP RandomForestRegressor RandomSearchCV 0.999602884 0.997994891 0.998462766 max_depth: 63

max_features: 

0.9446974381141753

min_samples_leaf: 2

n_estimators: 163

4 2nd (HF) Well, Qo, Ql, WC, Qinj, WHP, BHP, HF RandomForestRegressor RandomSearchCV 0.999658641 0.996911166 0.997442147 max_depth: 48

max_features: 

0.8219772826786358

min_samples_leaf: 1

n_estimators: 188

5 2nd (HF) Well, Ql, WC, Qinj, BHP,HF RandomForestRegressor RandomSearchCV 0.999580277 0.997861787 0.998362411 max_depth: 63

max_features: 

0.9446974381141753

min_samples_leaf: 2

n_estimators: 163
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Table 4 - Holdup Factor ML Result Summary 

 

 
Figure 38 - Holdup Factor Actual vs Prediction Plot 

3.3.1.4 Reservoir Pressure 

To predict reservoir pressure, RFR is the algorithm selected. After feature engineering without the other 

predicted parameters as features, the best test score obtained is 0.9892 with only Well, Liquid Rate, and 

Bottom-hole Pressure as features. By that test score, the model is the 3
rd

 highest among all predicted 

parameters. And taking Figure 36 to consideration, the model was once again trained with the addition of 

Liquid PI/ Holdup Factor/ Liquid PI and Holdup Factor as additional features. The best result has 0.9999 

test score with Liquid PI as an additional feature to the earlier three reduced features. 

Number Order Features Algo Preprocessor Optimizer train_R2 cv_R2 test_R2 Model Info

1 1st Well, Qo, Ql, WC, Qinj, WHP, BHP AutoML - KNeighborsRegressor 1 0.983 0.989 n_neighbors: 35

p: 1.2285500217972998

weights: distance

2 1st Well, Qo, Ql, WC, Qinj, WHP, BHP KNeighborsRegressor RandomSearchCV 1 0.997 0.999 n_neighbors: 2

p: 1.3225507642386005

weights: distance

3 1st Well, Qo, Ql, WC, Qinj, WHP, BHP KNeighborsRegressor num_pipe(scaling='standard', 

transform='yeo-johnson')

RandomSearchCV 1 0.997 0.999 n_neighbors: 2

p: 1.3225507642386005

weights: distance

4 1st Well, Qo, Ql, WC, Qinj, WHP, BHP KNeighborsRegressor num_pipe(scaling='minmax') RandomSearchCV 1 0.997 0.999 n_neighbors: 2

p: 1.3225507642386005

weights: distance

5 1st Well, Qo, Ql, WC, Qinj, WHP, BHP KNeighborsRegressor num_pipe(scaling='robust') RandomSearchCV 1 0.997 0.999 n_neighbors: 2

p: 1.3225507642386005

weights: distance

6 1st Ql, Qo, Qinj, WHP, BHP KNeighborsRegressor RandomSearchCV 1 0.998 0.9993 n_neighbors: 2

p: 1.3225507642386005

weights: distance

8 1st Ql, Qinj, WHP, BHP KNeighborsRegressor RandomSearchCV 1 0.947 0.95 n_neighbors: 9

p: 1.0159662522202142

weights: distance



     

 
“Kebijakan, Strategi dan Teknologi Tepat Guna untuk Meningkatkan 

Pengurasan Lapangan Minyak dan Gas di Indonesia“ 

 

PROFESSIONAL TECHNICAL PAPER 

 

Table 5 - Reservoir Pressure ML Result Summary 

 

 
Figure 39 - Reservoir Pressure Actual vs Prediction Plot 

3.3.1.5 Friction Factor 

As we can see from Table 6, the test scores for Friction Factor prediction have no value above 0.3. The 

trials that have been conducted are AutoML, feature engineering (reducing features decreased the test 

score in this case), and all possible re-arrangements of the prediction (added Liquid PI/ Holdup Factor/ 

Reservoir Pressure/ Liquid PI and Holdup Factor/ Liquid PI and Reservoir Pressure/ Holdup Factor and 

Reservoir Pressure/ All three as features) although from Figure 36 Friction Factor doesn’t correlate with 

other predicted parameters. 

Number Order Features Algo Preprocessor Optimizer train_R2 cv_R2 test_R2 Model Info

1 1st Well, Qo, Ql, WC, Qinj, WHP, BHP AutoML - RandomForestRegressor 0.99715 0.98 0.9824 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

2 1st Well, Qo, Ql, WC, Qinj, WHP, BHP RandomForestRegressor RandomSearchCV 0.99769 0.98 0.9828 max_depth: 48

max_features: 

0.8219772826786358

min_samples_leaf: 1

n_estimators: 188

3 1st Well, Ql, BHP, Qinj RandomForestRegressor RandomSearchCV 0.99689 0.985 0.9883 max_depth: 63

max_features: 

0.9446974381141753

min_samples_leaf: 2

n_estimators: 163

4 1st Well, Ql, BHP RandomForestRegressor RandomSearchCV 0.99843 0.987 0.9892 max_depth: 48

max_features: 

0.8219772826786358

min_samples_leaf: 1

n_estimators: 188

5 2nd (HF) Well, Qo, Ql, WC, Qinj, WHP, BHP, HF RandomForestRegressor RandomSearchCV 0.99765 0.98 0.9827 max_depth: 48

max_features: 

0.8219772826786358

min_samples_leaf: 1

n_estimators: 188

6 2nd (HF) Well, Ql, BHP, HF RandomForestRegressor RandomSearchCV 0.99677 0.985 0.9878 max_depth: 63

max_features: 

0.9446974381141753

min_samples_leaf: 2

n_estimators: 163

7 2nd (LP) Well, Ql, BHP, LP RandomForestRegressor RandomSearchCV 0.99999 1 0.9999 max_depth: 48

max_features: 

0.8219772826786358

min_samples_leaf: 1

n_estimators: 188

8 3rd (LP + HF)Well, Ql, BHP, HF, LP RandomForestRegressor RandomSearchCV 0.99999 1 0.9999 max_depth: 48

max_features: 

0.8219772826786358

min_samples_leaf: 1

n_estimators: 188
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Table 6 - Friction Factor ML Result Summary 

 
To analyze the cause of this, a nodal analysis of a well in the network model is run. The result was as 

expected, the total frictional pressure drops of the well which directly affected by the Friction Factor is 

very low (6.6 psi) compared to the elevational pressure drops (1025.424 psi) which is tuned by the 

Holdup Factor. Thus, for all the wells in this dummy network, the effect of Friction Factor variation is 

almost negligible which makes the Machine Learning cannot recognize a pattern from changing Friction 

Factor. Hence for this study, Friction Factor prediction is excluded. 

 
Figure 40 - Well_1 Nodal Analysis Result 

Number Order Features Algo Preprocessor Optimizer train_R2 cv_R2 test_R2 Model Info

1 1st Well, Qo, Ql, WC, Qinj, WHP, BHP AutoML - RandomForestRegressor 0.84331 0.166 0.2531 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

2 1st Well, Qo, Ql, WC, Qinj, WHP, BHP RandomForestRegressor RandomSearchCV 0.83834 0.166 0.2531 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

3 1st Qo, Ql, WHP, BHP RandomForestRegressor RandomSearchCV 0.82587 0.148 0.2279 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

4 2nd (HF) Well, Qo, Ql, WC, Qinj, WHP, BHP, HF RandomForestRegressor RandomSearchCV 0.85158 0.17 0.2628 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

5 2nd (LP) Well, Qo, Ql, WC, Qinj, WHP, BHP, LP RandomForestRegressor RandomSearchCV 0.84905 0.17 0.2631 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

6 2nd (RP) Well, Qo, Ql, WC, Qinj, WHP, BHP, RP RandomForestRegressor RandomSearchCV 0.84353 0.167 0.2586 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

7 3rd (HF + LP)Well, Qo, Ql, WC, Qinj, WHP, BHP, HF, LP RandomForestRegressor RandomSearchCV 0.85423 0.169 0.2723 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

8 3rd (HF + RP)Well, Qo, Ql, WC, Qinj, WHP, BHP, HF, RP RandomForestRegressor RandomSearchCV 0.85523 0.169 0.2652 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

9 3rd (LP + RP)Well, Qo, Ql, WC, Qinj, WHP, BHP, LP, RP RandomForestRegressor RandomSearchCV 0.85003 0.168 0.2651 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107

10 4th (HF + LP + RP)Well, Qo, Ql, WC, Qinj, WHP, BHP, HF, LP, RPRandomForestRegressor RandomSearchCV 0.85923 0.17 0.2728 max_depth: 55

max_features: 

0.8184656610700978

min_samples_leaf: 1

n_estimators: 107
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4 Conclusion 

Therefore, to answer all the objectives mentioned earlier, this study can be concluded: 

1. The four automated workflows minimize risk for data quality issues from human errors as it 

replaces many steps of manual data input 

2. All the workflows cut down the time consumed. As from the first and second steps, time 

consumed was reduced from 15 minutes/well to 3 seconds/well and from 30 minutes to 2 minutes 

for the network model merge with the assumption of using the dummy model. For the last 2 

workflows, data gathering, manual input, running the simulation and bring the result to 

visualization would take 30 minutes each day, with the automated workflows, those processes are 

reduced to 2 minutes for each run without any human effort. 

3. In the Auto-Calibration workflow, the feature importance in building machine learning workflow 

allow us to see that a field has its own feature importance, and it will be varied depend on the 

field’s condition. For this case study, the critical value to be calibrated is Holdup Factor, Liquid 

PI and reservoir pressure. For other fields, especially gas fields, the friction factor may be an 

important feature to build the machine learning model for calibration. 

4. With the capability and extensibility of Python and PIPESIM Python Toolkit API, the solutions 

are extended to: 

a. Daily updated production surveillance dashboard which insight consists of flow 

parameters and operation recommendation to maximize oil rate 

b. Extraction of Ambient Temperature data from a weather service API 

c. Auto-calibration Machine Learning workflow with >95% accuracy 

5 Recommendation 

To enhance the workflows, these several points are recommended: 

1. Make the Automatic Network Merge script to be an import plugin within PIPESIM 

2. Add field-level features to the Auto-calibration ML model input 

3. For the Auto-calibration ML to be adopt to other field settings, the building steps needs to be re-

done as different field has different characteristic and feature importance  

4. Explore other ML result enhancement methods: 

a. Polynomial features generation 

b. Binning for numerical features 

c. Use deep learning algorithms 

5. Augment the integration with reservoir simulation model that allows network coupling to obtain a 

digital twin from reservoir to production system. 

6 Nomenclature 

API Application Programming Interface 

BONMIN Basic Open-Source Mixed Integer 

CV Cross-Validation 

EOT End of Tubing 
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ESP Electrical Submersible Pump 

EVR Erosional Velocity Ratio 

FGS Flowing Gradient Survey 

GOR Gas-Oil-Ratio 

GUI Graphical User Interface 

I/ O  Input/ Output 

IPR Inflow Performance Relationship 

KNN K-Nearest Neighbor 

KPI Key Performance Indicator 

LLVR Liquid Loading Velocity Ratio 

MINLP Mixed Integer Non-Linear Programs 

ML Machine Learning 

MMscf/D Million Standard Cubic Feet per Day 

PCP Progressing Cavity Pump 

PDMS Production Database Management System 

PI Productivity Index 

psi pounds per square inch 

RFR Random Forest Regression 

SDK Software Development Kit 

SQL Standard Query Language 

STB/D Standard Barrel per Day 

SVR Support Vector Regression 

WC Water-Cut 

XGBoost Extreme Gradient Boosting 

7 References 

[1] Brown, K. E. (1984). The Technology of Artificial Lift Methods. Tulsa, Oklahoma: Penwell Books. 

[2] Guo, B., Lyons, W. C., & Ghalambor, A. (2006). Petroleum Production Engineering A Computer 

Assisted Approach. Lousiana: Guld Professional Publishing. 

[3] Hammadi, B., Agoudjil, K., Fahem, A., Tadjine, F., Benabdellah, H., Makhloufi, A., . . . Younsi, T. 

(2020). Unlocking the Production Potential of Brown Fields through Gas Lift Optimization GLO. 

International Petroleum Technology Conference. Dhahran, Saudi Arabia. 

[4] Irfan, M., Vidrianto, M., Rahmawati, S. D., & Naufal, A. A. (2020). A Breakthrough Approach for 

Predicting ESP Wells Virtual Flow Rate by Using Supervised Machine Learning Method. IATMI 

Symposium.  

[5] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning 

with Applications in R. New York: Springer Science+Business Media. 

[6] Putra, W. D. (2018, July). J.COp ML. Retrieved April 2020, from PyPI: 

https://pypi.org/project/jcopml/ 

[7] Putra, W. D. (2018, June). Supervised Learning by J.COp. Retrieved April 2020, from github: 

https://github.com/WiraDKP/supervised_learning 

[8] Putra, W. D. (2019, March). LuWiji. Retrieved April 2020, from PyPI: 

https://pypi.org/project/luwiji/ 

[9] Schlumberger. (2019). PIPESIM Online Help Version 2019.3. 

[10] Schlumberger. (2019). PIPESIM Python Toolkit 2019.2 Documentation. 



     

 
“Kebijakan, Strategi dan Teknologi Tepat Guna untuk Meningkatkan 

Pengurasan Lapangan Minyak dan Gas di Indonesia“ 

 

PROFESSIONAL TECHNICAL PAPER 

 

 


